Solveeit Logo

Question

Question: If $\cos^5 x + \cos^5(x+\frac{2\pi}{3}) + \cos^5(x+\frac{4\pi}{3}) = 0$ then find the number of so...

If

cos5x+cos5(x+2π3)+cos5(x+4π3)=0\cos^5 x + \cos^5(x+\frac{2\pi}{3}) + \cos^5(x+\frac{4\pi}{3}) = 0

then find the number of solution(s) in [0,2π][0,2\pi].

Answer

6 (There are 6 solutions in the interval [0,2π][0,2\pi]).

Explanation

Solution

Write cos5θ\cos^5\theta as 10cosθ+5cos3θ+cos5θ16\frac{10\cos\theta+5\cos3\theta+\cos5\theta}{16}.

Sum over the angles x,x+2π3,x+4π3x,\,x+\frac{2\pi}{3},\,x+\frac{4\pi}{3}. The sums for cosθ\cos\theta and cos5θ\cos5\theta vanish.

Only the cos3x\cos3x term survives giving 15cos3x16=0 \frac{15\cos3x}{16}=0 so that cos3x=0\cos3x=0.

Solve cos3x=0x=π6+kπ3\cos3x=0 \Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{3} and count 6 solutions in [0,2π][0,2\pi].