Solveeit Logo

Question

Question: For an infinite line of charge having charge density $\lambda$ lying along x-axis, the work required...

For an infinite line of charge having charge density λ\lambda lying along x-axis, the work required in moving charge q from C to A along arc CA is:

A

qλπϵ0loge2\frac{q\lambda}{\pi\epsilon_0} log_e \sqrt{2}

B

qλ4πϵ0loge2\frac{q\lambda}{4\pi\epsilon_0} log_e \sqrt{2}

C

qλ4πϵ0loge2\frac{q\lambda}{4\pi\epsilon_0} log_e 2

D

qλ2πϵ0loge12\frac{q\lambda}{2\pi\epsilon_0} log_e \frac{1}{2}

Answer

qλ4πϵ0loge2\frac{q\lambda}{4\pi\epsilon_0} log_e 2

Explanation

Solution

The electric potential at a distance rr from an infinite line of charge with linear charge density λ\lambda is given by:

V(r)=λ2πϵ0loger+KV(r) = -\frac{\lambda}{2\pi\epsilon_0} \log_e r + K

where KK is an arbitrary constant.

The work done in moving a charge qq from point C to point A is:

WCA=q(VAVC)W_{C \to A} = q(V_A - V_C)

The potential difference between points A and C is:

VAVC=(λ2πϵ0logerA+K)(λ2πϵ0logerC+K)=λ2πϵ0(logerAlogerC)=λ2πϵ0(logerClogerA)=λ2πϵ0loge(rCrA)V_A - V_C = \left(-\frac{\lambda}{2\pi\epsilon_0} \log_e r_A + K\right) - \left(-\frac{\lambda}{2\pi\epsilon_0} \log_e r_C + K\right) = -\frac{\lambda}{2\pi\epsilon_0} (\log_e r_A - \log_e r_C) = \frac{\lambda}{2\pi\epsilon_0} (\log_e r_C - \log_e r_A) = \frac{\lambda}{2\pi\epsilon_0} \log_e \left(\frac{r_C}{r_A}\right)

From the figure, assume that point C is located such that its distance from the x-axis is rC=2ar_C = \sqrt{2}a, and point A is at a distance rA=ar_A = a from the x-axis. This would make the ratio rC/rA=2r_C/r_A = \sqrt{2}.

Then the work done is:

WCA=q(VAVC)=qλ2πϵ0loge(rCrA)=qλ2πϵ0loge(2aa)=qλ2πϵ0loge2W_{C \to A} = q(V_A - V_C) = q \frac{\lambda}{2\pi\epsilon_0} \log_e \left(\frac{r_C}{r_A}\right) = q \frac{\lambda}{2\pi\epsilon_0} \log_e \left(\frac{\sqrt{2}a}{a}\right) = q \frac{\lambda}{2\pi\epsilon_0} \log_e \sqrt{2}

Since loge2=2loge2\log_e 2 = 2 \log_e \sqrt{2}, then loge2=12loge2\log_e \sqrt{2} = \frac{1}{2} \log_e 2.

Therefore, WCA=qλ2πϵ0loge2=qλ2πϵ012loge2=qλ4πϵ0loge2W_{C \to A} = \frac{q\lambda}{2\pi\epsilon_0} \log_e \sqrt{2} = \frac{q\lambda}{2\pi\epsilon_0} \frac{1}{2} \log_e 2 = \frac{q\lambda}{4\pi\epsilon_0} \log_e 2