Solveeit Logo

Question

Question: Find the locus of the mid point of the chord of a circle $x^2 + y^2 = 4$ such that the segment inter...

Find the locus of the mid point of the chord of a circle x2+y2=4x^2 + y^2 = 4 such that the segment intercepted by the chord on the curve x22x2y=0x^2 - 2x - 2y = 0 subtends a right angle at the origin.

A

(x-1)^2 + (y-1)^2 = 2

B

x^2 + y^2 = 2

C

(x-1)^2 + (y-1)^2 = 4

D

x^2 + y^2 = 4

Answer

(x-1)^2 + (y-1)^2 = 2

Explanation

Solution

Let M(h,k)M(h,k) be the midpoint of a chord of the circle C1:x2+y2=4C_1: x^2 + y^2 = 4. The equation of the chord is hx+ky=h2+k2hx + ky = h^2 + k^2. Let this line be LL.

The line LL intersects the parabola C2:x22x2y=0C_2: x^2 - 2x - 2y = 0 at two points, P(x1,y1)P(x_1, y_1) and Q(x2,y2)Q(x_2, y_2). The condition is that POQ=90\angle POQ = 90^\circ, which means x1x2+y1y2=0x_1x_2 + y_1y_2 = 0.

From LL, y=hkx+h2+k2ky = -\frac{h}{k}x + \frac{h^2+k^2}{k} (assuming k0k \neq 0). Substituting this into the parabola equation: x22x2(hkx+h2+k2k)=0x^2 - 2x - 2\left(-\frac{h}{k}x + \frac{h^2+k^2}{k}\right) = 0 kx2+(2h2k)x2(h2+k2)=0kx^2 + (2h - 2k)x - 2(h^2+k^2) = 0 By Vieta's formulas, x1x2=2(h2+k2)kx_1x_2 = \frac{-2(h^2+k^2)}{k}.

Since PP and QQ lie on the parabola, y=x22x2y = \frac{x^2-2x}{2}. So, y1y2=14(x122x1)(x222x2)=14((x1x2)22x1x2(x1+x2)+4x1x2)y_1y_2 = \frac{1}{4}(x_1^2-2x_1)(x_2^2-2x_2) = \frac{1}{4}((x_1x_2)^2 - 2x_1x_2(x_1+x_2) + 4x_1x_2). Also, x1+x2=2k2hkx_1+x_2 = \frac{2k-2h}{k}. Substituting these into the expression for y1y2y_1y_2: y1y2=14((2(h2+k2)k)22(2(h2+k2)k)(2k2hk)+4(2(h2+k2)k))y_1y_2 = \frac{1}{4}\left(\left(\frac{-2(h^2+k^2)}{k}\right)^2 - 2\left(\frac{-2(h^2+k^2)}{k}\right)\left(\frac{2k-2h}{k}\right) + 4\left(\frac{-2(h^2+k^2)}{k}\right)\right) y1y2=h2+k2k2(h2+k22h)y_1y_2 = \frac{h^2+k^2}{k^2}(h^2+k^2 - 2h)

Now, applying x1x2+y1y2=0x_1x_2 + y_1y_2 = 0: 2(h2+k2)k+h2+k2k2(h2+k22h)=0\frac{-2(h^2+k^2)}{k} + \frac{h^2+k^2}{k^2}(h^2+k^2 - 2h) = 0 h2+k2k(2+h2+k22hk)=0\frac{h^2+k^2}{k}\left(-2 + \frac{h^2+k^2-2h}{k}\right) = 0 This yields 2k+h2+k22h=0-2k + h^2+k^2-2h = 0, or h22h+k22k=0h^2 - 2h + k^2 - 2k = 0.

Replacing hh with xx and kk with yy, we get x22x+y22y=0x^2 - 2x + y^2 - 2y = 0. Completing the square: (x1)2+(y1)2=2(x-1)^2 + (y-1)^2 = 2. This is the equation of a circle with center (1,1)(1,1) and radius 2\sqrt{2}. The case k=0k=0 needs to be checked. If k=0k=0, the midpoint is (h,0)(h,0) and the chord is x=hx=h. This line intersects the parabola at a single point, so no segment is intercepted. Thus k0k \neq 0 is required. The origin (0,0)(0,0) is not a solution because the angle POQ\angle POQ is undefined if P=OP=O. The derived locus (x1)2+(y1)2=2(x-1)^2 + (y-1)^2 = 2 does not contain the origin.