Solveeit Logo

Question

Question: Consider the function $f(x) = x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+(x+3)\sqrt{1+.....}}}}$, then $\lim...

Consider the function f(x)=x1+(x+1)1+(x+2)1+(x+3)1+.....f(x) = x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+(x+3)\sqrt{1+.....}}}}, then limnx=1n1f(x)\lim_{n \to \infty} \sum_{x=1}^{n} \frac{1}{f(x)} is pq\frac{p}{q} where p and q are coprime, then p + q is equal to

Answer

7

Explanation

Solution

Solution:

We are given

f(x)=x1+(x+1)1+(x+2)1+(x+3)1+.f(x)=x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+(x+3)\sqrt{1+\cdots}}}}.

Define

g(x)=1+(x+1)1+(x+2)1+(x+3)1+,g(x)=\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+(x+3)\sqrt{1+\cdots}}}},

so that

f(x)=xg(x).f(x)=x\,g(x).

Notice that the “tail” of the nested radical has the same form (with a shift in xx). In fact, we can write

g(x)=1+(x+1)g(x+1).g(x)=\sqrt{1+(x+1)\,g(x+1)}.

Now, we try a linear form for g(x)g(x):

g(x)=ax+b.g(x)=a\,x+b.

Square both sides of the recurrence:

g(x)2=1+(x+1)g(x+1).g(x)^2 =1+(x+1)\,g(x+1).

Substitute g(x)=ax+bg(x)=ax+b and g(x+1)=a(x+1)+b=ax+(a+b)g(x+1)=a(x+1)+b=a\,x+(a+b). Then

(ax+b)2=1+(x+1)[ax+(a+b)].(a\,x+b)^2 = 1+(x+1)[a\,x+(a+b)].

Expanding both sides:

a2x2+2abx+b2=1+ax2+(2a+b)x+(a+b).a^2x^2+2ab\,x+b^2 = 1+a\,x^2+(2a+b)x+(a+b).

Equate coefficients for all powers of xx:

  1. Coefficient of x2x^2: a2=aa^2=a ⟹ a=1a=1 (since a0a\ne0).
  2. Coefficient of xx: 2b=2a+b2b=2a+b ⟹ 2b=2+b2b=2+b ⟹ b=2b=2.
  3. Constant term: b2=1+(a+b)b^2=1+(a+b) ⟹ 4=1+1+2=44=1+1+2=4 (satisfied).

Thus,

g(x)=x+2andf(x)=x(x+2)=x2+2x.g(x)=x+2\quad\text{and}\quad f(x)=x(x+2)=x^2+2x.

Now, consider the sum

Sn=x=1n1f(x)=x=1n1x(x+2).S_n=\sum_{x=1}^{n}\frac{1}{f(x)}=\sum_{x=1}^{n}\frac{1}{x(x+2)}.

Decompose into partial fractions:

1x(x+2)=12(1x1x+2).\frac{1}{x(x+2)}=\frac{1}{2}\left(\frac{1}{x}-\frac{1}{x+2}\right).

Thus,

Sn=12x=1n(1x1x+2).S_n=\frac{1}{2}\sum_{x=1}^{n}\left(\frac{1}{x}-\frac{1}{x+2}\right).

Writing out terms we see telescoping:

Sn=12[(11+12+13++1n)(13+14++1n+2)].S_n=\frac{1}{2}\Biggl[\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)-\left(\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n+2}\right)\Biggr].

Everything cancels except:

Sn=12(11+121n+11n+2).S_n=\frac{1}{2}\left(\frac{1}{1}+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right).

Taking the limit as nn\to\infty, the last two terms vanish:

limnSn=12(1+12)=1232=34.\lim_{n\to\infty} S_n=\frac{1}{2}\left(1+\frac{1}{2}\right)=\frac{1}{2}\cdot\frac{3}{2}=\frac{3}{4}.

Here 34\frac{3}{4} is in lowest terms, so p=3p=3 and q=4q=4.

Thus, p+q=3+4=7p+q=3+4=7.


Minimal Explanation:

  1. Write f(x)=xg(x)f(x)=x\,g(x) where g(x)=1+(x+1)g(x+1)g(x)=\sqrt{1+(x+1)g(x+1)}.
  2. Assume g(x)=x+2g(x)=x+2. Verification shows it works.
  3. Hence, f(x)=x(x+2)f(x)=x(x+2) and 1f(x)=1x(x+2)=12(1x1x+2)\displaystyle \frac{1}{f(x)}=\frac{1}{x(x+2)}=\frac{1}{2}\left(\frac{1}{x}-\frac{1}{x+2}\right).
  4. Telescoping the series x=1n1f(x)\sum_{x=1}^n \frac{1}{f(x)} gives 12(1+121n+11n+2)\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right), so the limit is 34\frac{3}{4}.
  5. Therefore, p+q=3+4=7p+q=3+4=7.