Question
Question: Consider the function $f(x) = x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+(x+3)\sqrt{1+.....}}}}$, then $\lim...
Consider the function f(x)=x1+(x+1)1+(x+2)1+(x+3)1+....., then limn→∞∑x=1nf(x)1 is qp where p and q are coprime, then p + q is equal to
Answer
7
Explanation
Solution
Solution:
We are given
f(x)=x1+(x+1)1+(x+2)1+(x+3)1+⋯.Define
g(x)=1+(x+1)1+(x+2)1+(x+3)1+⋯,so that
f(x)=xg(x).Notice that the “tail” of the nested radical has the same form (with a shift in x). In fact, we can write
g(x)=1+(x+1)g(x+1).Now, we try a linear form for g(x):
g(x)=ax+b.Square both sides of the recurrence:
g(x)2=1+(x+1)g(x+1).Substitute g(x)=ax+b and g(x+1)=a(x+1)+b=ax+(a+b). Then
(ax+b)2=1+(x+1)[ax+(a+b)].Expanding both sides:
a2x2+2abx+b2=1+ax2+(2a+b)x+(a+b).Equate coefficients for all powers of x:
- Coefficient of x2: a2=a ⟹ a=1 (since a=0).
- Coefficient of x: 2b=2a+b ⟹ 2b=2+b ⟹ b=2.
- Constant term: b2=1+(a+b) ⟹ 4=1+1+2=4 (satisfied).
Thus,
g(x)=x+2andf(x)=x(x+2)=x2+2x.Now, consider the sum
Sn=x=1∑nf(x)1=x=1∑nx(x+2)1.Decompose into partial fractions:
x(x+2)1=21(x1−x+21).Thus,
Sn=21x=1∑n(x1−x+21).Writing out terms we see telescoping:
Sn=21[(11+21+31+⋯+n1)−(31+41+⋯+n+21)].Everything cancels except:
Sn=21(11+21−n+11−n+21).Taking the limit as n→∞, the last two terms vanish:
n→∞limSn=21(1+21)=21⋅23=43.Here 43 is in lowest terms, so p=3 and q=4.
Thus, p+q=3+4=7.
Minimal Explanation:
- Write f(x)=xg(x) where g(x)=1+(x+1)g(x+1).
- Assume g(x)=x+2. Verification shows it works.
- Hence, f(x)=x(x+2) and f(x)1=x(x+2)1=21(x1−x+21).
- Telescoping the series ∑x=1nf(x)1 gives 21(1+21−n+11−n+21), so the limit is 43.
- Therefore, p+q=3+4=7.