Solveeit Logo

Question

Question: A stationary $He^+$ ion emitted a photon corresponding to a first line of the Lyman series. The phot...

A stationary He+He^+ ion emitted a photon corresponding to a first line of the Lyman series. The photon liberated a photoelectron from a stationary hydrogen atom in ground state. What is the speed (in 10810^8 cm/sec.) of photoelectron. (Ionisation energy of hydrogen atom = 13.6eV, e = 1.6 x 101910^{-19} C. Mass of electron = 9.1 x 103110^{-31} kg)

Answer

3.093

Explanation

Solution

  1. Photon energy from He+He^+ (Z=2) for the first Lyman line (n=2n=1n=2 \to n=1): Ephoton=13.6×Z2×(112122)=13.6×22×34=13.6×3=40.8E_{photon} = 13.6 \times Z^2 \times (\frac{1}{1^2} - \frac{1}{2^2}) = 13.6 \times 2^2 \times \frac{3}{4} = 13.6 \times 3 = 40.8 eV.

  2. Work function for hydrogen ground state: ϕ=13.6\phi = 13.6 eV.

  3. Kinetic energy of photoelectron: KE=Ephotonϕ=40.8 eV13.6 eV=27.2KE = E_{photon} - \phi = 40.8 \text{ eV} - 13.6 \text{ eV} = 27.2 eV.

  4. Convert KE to Joules: KE=27.2×1.6×1019 J=43.52×1019KE = 27.2 \times 1.6 \times 10^{-19} \text{ J} = 43.52 \times 10^{-19} J.

  5. Calculate speed using KE=12mv2KE = \frac{1}{2}mv^2: v=2×KEm=2×43.52×10199.1×10313.0927×106v = \sqrt{\frac{2 \times KE}{m}} = \sqrt{\frac{2 \times 43.52 \times 10^{-19}}{9.1 \times 10^{-31}}} \approx 3.0927 \times 10^6 m/s.

  6. Convert to cm/sec: v3.0927×106×100 cm/s=3.0927×108v \approx 3.0927 \times 10^6 \times 100 \text{ cm/s} = 3.0927 \times 10^8 cm/s.

The speed is approximately 3.093×1083.093 \times 10^8 cm/sec. The value in 10810^8 cm/sec is 3.093.