Solveeit Logo

Question

Question: The approximate value of $3^{2.001}$, if log 3 = 1.0986 is...

The approximate value of 32.0013^{2.001}, if log 3 = 1.0986 is

A

9.00898

B

9.0989

C

9.0898

D

9.00989

Answer

9.00989

Explanation

Solution

We start with:

32.001=32×30.001=9×30.0013^{2.001} = 3^2 \times 3^{0.001} = 9 \times 3^{0.001}

Using the property ax=exlnaa^x = e^{x \ln a}:

30.001=e0.001ln3withln3=1.09863^{0.001} = e^{0.001 \ln 3} \quad \text{with} \quad \ln 3 = 1.0986 30.001=e0.00109861+0.0010986(using ex1+x for small x)3^{0.001} = e^{0.0010986} \approx 1 + 0.0010986 \quad \text{(using } e^x \approx 1+x \text{ for small } x\text{)}

Thus:

32.0019×(1+0.0010986)=9×1.00109869.009893^{2.001} \approx 9 \times (1 + 0.0010986) = 9 \times 1.0010986 \approx 9.00989