Solveeit Logo

Question

Question: Let $f(x) = \int_{0}^{x} (t + \sin(1-e^t)) dt, x \in R$. Then, $\lim_{x \to 0} \frac{f(x)}{x^3}$ is ...

Let f(x)=0x(t+sin(1et))dt,xRf(x) = \int_{0}^{x} (t + \sin(1-e^t)) dt, x \in R. Then, limx0f(x)x3\lim_{x \to 0} \frac{f(x)}{x^3} is equal to:

A

1/6

B

-1/6

C

-2/3

D

2/3

Answer

-1/6

Explanation

Solution

Since f(0)=0f(0) = 0, the limit is of the indeterminate form 00\frac{0}{0}. We apply L'Hôpital's Rule three times.

  1. First application: limx0f(x)x3=limx0f(x)3x2=limx0x+sin(1ex)3x2\lim_{x \to 0} \frac{f(x)}{x^3} = \lim_{x \to 0} \frac{f'(x)}{3x^2} = \lim_{x \to 0} \frac{x + \sin(1-e^x)}{3x^2} (still 00\frac{0}{0}).

  2. Second application: limx01excos(1ex)6x\lim_{x \to 0} \frac{1 - e^x \cos(1-e^x)}{6x} (still 00\frac{0}{0}).

  3. Third application: limx0[excos(1ex)+e2xsin(1ex)]6\lim_{x \to 0} \frac{-[e^x \cos(1-e^x) + e^{2x} \sin(1-e^x)]}{6}

Evaluating at x=0x=0: [e0cos(1e0)+e0sin(1e0)]6=[1cos(0)+1sin(0)]6=[11+10]6=16\frac{-[e^0 \cos(1-e^0) + e^{0} \sin(1-e^0)]}{6} = \frac{-[1 \cdot \cos(0) + 1 \cdot \sin(0)]}{6} = \frac{-[1 \cdot 1 + 1 \cdot 0]}{6} = -\frac{1}{6}.