Question
Question: If the fourth term in the Binomial expansion of $\left(\frac{2}{x}+x^{\log_{8}x}\right)^{6}$, $x>0$ ...
If the fourth term in the Binomial expansion of (x2+xlog8x)6, x>0 is 20×87, then a value of x is

A
83
B
8
C
8−2
D
82
Answer
82
Explanation
Solution
The (r+1)-th term in the binomial expansion of (a+b)n is Tr+1=(rn)an−rbr. For the expansion (x2+xlog8x)6, n=6, a=x2, b=xlog8x. The fourth term (T4) corresponds to r=3. T4=(36)(x2)6−3(xlog8x)3=20(x2)3x3log8x=20x38x3log8x=160x−3+3log8x. Given T4=20×87. 160x−3+3log8x=20×87 8x−3+3log8x=87 x−3+3log8x=86. Let y=log8x, so x=8y. (8y)−3+3y=86⟹8y(−3+3y)=86. Equating exponents: −3y+3y2=6⟹3y2−3y−6=0⟹y2−y−2=0. Factoring gives (y−2)(y+1)=0, so y=2 or y=−1. If y=2, log8x=2⟹x=82. If y=−1, log8x=−1⟹x=8−1. Since 82 is an option, it is a valid solution.
