Solveeit Logo

Question

Question: If the fourth term in the Binomial expansion of $\left(\frac{2}{x}+x^{\log_{8}x}\right)^{6}$, $x>0$ ...

If the fourth term in the Binomial expansion of (2x+xlog8x)6\left(\frac{2}{x}+x^{\log_{8}x}\right)^{6}, x>0x>0 is 20×8720\times 8^{7}, then a value of xx is

A

838^{3}

B

8

C

828^{-2}

D

828^{2}

Answer

828^2

Explanation

Solution

The (r+1)(r+1)-th term in the binomial expansion of (a+b)n(a+b)^n is Tr+1=(nr)anrbrT_{r+1} = \binom{n}{r} a^{n-r} b^r. For the expansion (2x+xlog8x)6\left(\frac{2}{x}+x^{\log_{8}x}\right)^{6}, n=6n=6, a=2xa=\frac{2}{x}, b=xlog8xb=x^{\log_{8}x}. The fourth term (T4T_4) corresponds to r=3r=3. T4=(63)(2x)63(xlog8x)3=20(2x)3x3log8x=208x3x3log8x=160x3+3log8xT_4 = \binom{6}{3} \left(\frac{2}{x}\right)^{6-3} \left(x^{\log_{8}x}\right)^{3} = 20 \left(\frac{2}{x}\right)^{3} x^{3\log_{8}x} = 20 \frac{8}{x^3} x^{3\log_{8}x} = 160 x^{-3+3\log_{8}x}. Given T4=20×87T_4 = 20 \times 8^7. 160x3+3log8x=20×87160 x^{-3+3\log_{8}x} = 20 \times 8^7 8x3+3log8x=878 x^{-3+3\log_{8}x} = 8^7 x3+3log8x=86x^{-3+3\log_{8}x} = 8^6. Let y=log8xy = \log_{8}x, so x=8yx = 8^y. (8y)3+3y=86    8y(3+3y)=86(8^y)^{-3+3y} = 8^6 \implies 8^{y(-3+3y)} = 8^6. Equating exponents: 3y+3y2=6    3y23y6=0    y2y2=0-3y+3y^2 = 6 \implies 3y^2-3y-6=0 \implies y^2-y-2=0. Factoring gives (y2)(y+1)=0(y-2)(y+1)=0, so y=2y=2 or y=1y=-1. If y=2y=2, log8x=2    x=82\log_{8}x = 2 \implies x=8^2. If y=1y=-1, log8x=1    x=81\log_{8}x = -1 \implies x=8^{-1}. Since 828^2 is an option, it is a valid solution.