Solveeit Logo

Question

Question: If shortest wavelength of H-atom in Balmer series is xÅ then, (i) The shortest wave length in Lyman ...

If shortest wavelength of H-atom in Balmer series is xÅ then, (i) The shortest wave length in Lyman series is xy\frac{x}{y}Å. The value of 'y' is. (ii) The longest wave length in Paschen series is xz\frac{x}{z}Å. The value of 'z' is.

Answer

For (i): y = 4. For (ii): z = 7/36.

Explanation

Solution

The Rydberg formula for the wavelength of spectral lines is: 1λ=RZ2(1nf21ni2)\frac{1}{\lambda} = RZ^2 \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) For a Hydrogen atom, Z=1Z=1.

The shortest wavelength in the Balmer series corresponds to the transition from ni=n_i = \infty to nf=2n_f = 2. Given this shortest wavelength is xx Å: 1x=R(12212)=R(14)\frac{1}{x} = R \left( \frac{1}{2^2} - \frac{1}{\infty^2} \right) = R \left( \frac{1}{4} \right) This implies R=4xR = \frac{4}{x}.

(i) The shortest wavelength in the Lyman series corresponds to the transition from ni=n_i = \infty to nf=1n_f = 1. 1λL=R(11212)=R\frac{1}{\lambda_L} = R \left( \frac{1}{1^2} - \frac{1}{\infty^2} \right) = R Substituting the value of RR: 1λL=4x    λL=x4\frac{1}{\lambda_L} = \frac{4}{x} \implies \lambda_L = \frac{x}{4} Given λL=xy\lambda_L = \frac{x}{y}, we find y=4y = 4.

(ii) The longest wavelength in the Paschen series corresponds to the transition from ni=4n_i = 4 to nf=3n_f = 3 (the smallest energy difference for nf=3n_f=3). 1λP=R(132142)=R(19116)=R(169144)=R(7144)\frac{1}{\lambda_P} = R \left( \frac{1}{3^2} - \frac{1}{4^2} \right) = R \left( \frac{1}{9} - \frac{1}{16} \right) = R \left( \frac{16 - 9}{144} \right) = R \left( \frac{7}{144} \right) Substituting the value of RR: 1λP=4x(7144)=28144x=736x\frac{1}{\lambda_P} = \frac{4}{x} \left( \frac{7}{144} \right) = \frac{28}{144x} = \frac{7}{36x} Therefore, λP=36x7\lambda_P = \frac{36x}{7}. Given λP=xz\lambda_P = \frac{x}{z}, we have: 36x7=xz    z=736\frac{36x}{7} = \frac{x}{z} \implies z = \frac{7}{36}