Solveeit Logo

Question

Question: Let $f(x)$ be a cubic polynomial defined by $f(x)=\frac{x^{3}}{3}+(a-3)x^{2}+x-13$. Then, the sum of...

Let f(x)f(x) be a cubic polynomial defined by f(x)=x33+(a3)x2+x13f(x)=\frac{x^{3}}{3}+(a-3)x^{2}+x-13. Then, the sum of all possible value(s) of 'a' for which f(x)f(x) has negative point of local minimum in the interval [1,5][1, 5], is

Answer

1

Explanation

Solution

To find the local extrema of f(x)f(x), we first compute its derivative f(x)f'(x):

f(x)=x33+(a3)x2+x13f(x)=\frac{x^{3}}{3}+(a-3)x^{2}+x-13

f(x)=ddx(x33+(a3)x2+x13)=x2+2(a3)x+1f'(x) = \frac{d}{dx}\left(\frac{x^{3}}{3}+(a-3)x^{2}+x-13\right) = x^2 + 2(a-3)x + 1

For local extrema, we set f(x)=0f'(x) = 0:

x2+2(a3)x+1=0x^2 + 2(a-3)x + 1 = 0

This is a quadratic equation. Let its roots be x1x_1 and x2x_2. For real roots, the discriminant DD must be non-negative:

D=(2(a3))24(1)(1)=4(a3)24=4((a3)21)D = (2(a-3))^2 - 4(1)(1) = 4(a-3)^2 - 4 = 4((a-3)^2 - 1)

For real roots, D0    (a3)210    (a3)21D \ge 0 \implies (a-3)^2 - 1 \ge 0 \implies (a-3)^2 \ge 1.

This implies a31|a-3| \ge 1, so a31a-3 \ge 1 or a31a-3 \le -1.

Thus, a4a \ge 4 or a2a \le 2.

Now, let's determine which root corresponds to a local minimum. We use the second derivative test:

f(x)=ddx(x2+2(a3)x+1)=2x+2(a3)f''(x) = \frac{d}{dx}(x^2 + 2(a-3)x + 1) = 2x + 2(a-3)

The roots of f(x)=0f'(x)=0 are x=2(a3)±4((a3)21)2=(a3)±(a3)21x = \frac{-2(a-3) \pm \sqrt{4((a-3)^2 - 1)}}{2} = -(a-3) \pm \sqrt{(a-3)^2 - 1}.

Let x1=(a3)(a3)21x_1 = -(a-3) - \sqrt{(a-3)^2 - 1} and x2=(a3)+(a3)21x_2 = -(a-3) + \sqrt{(a-3)^2 - 1}. Note that x1<x2x_1 < x_2.

Evaluate f(x)f''(x) at these roots:

For x1x_1: f(x1)=2x1+2(a3)=2((a3)(a3)21)+2(a3)=2(a3)21f''(x_1) = 2x_1 + 2(a-3) = 2(-(a-3) - \sqrt{(a-3)^2 - 1}) + 2(a-3) = -2\sqrt{(a-3)^2 - 1}.

For x2x_2: f(x2)=2x2+2(a3)=2((a3)+(a3)21)+2(a3)=2(a3)21f''(x_2) = 2x_2 + 2(a-3) = 2(-(a-3) + \sqrt{(a-3)^2 - 1}) + 2(a-3) = 2\sqrt{(a-3)^2 - 1}.

For a local minimum, f(x)>0f''(x) > 0.

If D>0D > 0, then (a3)21>0\sqrt{(a-3)^2 - 1} > 0. In this case, f(x1)<0f''(x_1) < 0 (local maximum) and f(x2)>0f''(x_2) > 0 (local minimum).

Thus, the point of local minimum is xmin=x2=(a3)+(a3)21x_{min} = x_2 = -(a-3) + \sqrt{(a-3)^2 - 1}.

If D=0D = 0, i.e., a=4a=4 or a=2a=2, then f(x1)=f(x2)=0f''(x_1)=f''(x_2)=0. In this case, f(x)f'(x) is a perfect square, e.g., for a=2a=2, f(x)=(x1)2f'(x)=(x-1)^2. At x=1x=1, f(1)=0,f(1)=0,f(1)=20f'(1)=0, f''(1)=0, f'''(1)=2 \ne 0. This indicates an inflection point, not a local extremum. So, for a local minimum to exist, we must have D>0D>0, which means a<2a < 2 or a>4a > 4.

We need the local minimum to be in the interval [1,5][1, 5], i.e., 1xmin51 \le x_{min} \le 5.

Case 1: a>4a > 4.

Let k=a3k = a-3. Then k>1k > 1.

xmin=k+k21x_{min} = -k + \sqrt{k^2 - 1}.

Since k>1k > 1, k21<k2k^2 - 1 < k^2, so k21<k\sqrt{k^2 - 1} < k.

Therefore, xmin=k+k21<0x_{min} = -k + \sqrt{k^2 - 1} < 0.

This means xminx_{min} is negative. This contradicts the condition xmin[1,5]x_{min} \in [1, 5].

So, there are no solutions for a>4a > 4.

Case 2: a<2a < 2.

Let k=a3k = a-3. Then k<1k < -1.

xmin=k+k21x_{min} = -k + \sqrt{k^2 - 1}.

Since k<1k < -1, let k=mk = -m where m>1m > 1.

xmin=(m)+(m)21=m+m21x_{min} = -(-m) + \sqrt{(-m)^2 - 1} = m + \sqrt{m^2 - 1}.

Since m>1m > 1, m21>0m^2 - 1 > 0.

So xmin=m+m21>1+121=1x_{min} = m + \sqrt{m^2 - 1} > 1 + \sqrt{1^2 - 1} = 1.

Thus, the condition xmin1x_{min} \ge 1 is always satisfied for a<2a < 2.

Now we need to satisfy xmin5x_{min} \le 5:

m+m215m + \sqrt{m^2 - 1} \le 5.

m215m\sqrt{m^2 - 1} \le 5 - m.

For this inequality to hold, we must have 5m05 - m \ge 0, so m5m \le 5.

Since we are in the case m>1m > 1, we have 1<m51 < m \le 5.

Square both sides of m215m\sqrt{m^2 - 1} \le 5 - m:

m21(5m)2m^2 - 1 \le (5 - m)^2

m212510m+m2m^2 - 1 \le 25 - 10m + m^2

12510m-1 \le 25 - 10m

10m2610m \le 26

m2.6m \le 2.6.

Combining 1<m51 < m \le 5 and m2.6m \le 2.6, we get 1<m2.61 < m \le 2.6.

Recall that m=(a3)=3am = -(a-3) = 3-a.

So, 1<3a2.61 < 3-a \le 2.6.

1<3a    a<21 < 3-a \implies a < 2.

3a2.6    0.4a3-a \le 2.6 \implies 0.4 \le a.

Combining these, the range for aa is 0.4a<20.4 \le a < 2.

Next, we need to satisfy the condition that f(xmin)<0f(x_{min}) < 0 (the point of local minimum is negative, referring to the function value).

We know that xminx_{min} is a root of x2+2(a3)x+1=0x^2 + 2(a-3)x + 1 = 0, so 2(a3)=xmin2+1xmin2(a-3) = -\frac{x_{min}^2+1}{x_{min}}.

Substitute a3a-3 into f(xmin)f(x_{min}):

f(xmin)=xmin33+(a3)xmin2+xmin13f(x_{min}) = \frac{x_{min}^3}{3}+(a-3)x_{min}^2+x_{min}-13

f(xmin)=xmin33+(xmin2+12xmin)xmin2+xmin13f(x_{min}) = \frac{x_{min}^3}{3} + \left(-\frac{x_{min}^2+1}{2x_{min}}\right)x_{min}^2 + x_{min} - 13

f(xmin)=xmin33xmin(xmin2+1)2+xmin13f(x_{min}) = \frac{x_{min}^3}{3} - \frac{x_{min}(x_{min}^2+1)}{2} + x_{min} - 13

f(xmin)=2xmin33xmin33xmin6+xmin13f(x_{min}) = \frac{2x_{min}^3 - 3x_{min}^3 - 3x_{min}}{6} + x_{min} - 13

f(xmin)=xmin33xmin+6xmin613f(x_{min}) = \frac{-x_{min}^3 - 3x_{min} + 6x_{min}}{6} - 13

f(xmin)=xmin3+3xmin613=xmin(3xmin2)613f(x_{min}) = \frac{-x_{min}^3 + 3x_{min}}{6} - 13 = \frac{x_{min}(3-x_{min}^2)}{6} - 13.

We need f(xmin)<0f(x_{min}) < 0:

xmin(3xmin2)613<0\frac{x_{min}(3-x_{min}^2)}{6} - 13 < 0

xmin(3xmin2)6<13\frac{x_{min}(3-x_{min}^2)}{6} < 13

xmin(3xmin2)<78x_{min}(3-x_{min}^2) < 78.

Let g(x)=x(3x2)=3xx3g(x) = x(3-x^2) = 3x - x^3. We need to check if g(xmin)<78g(x_{min}) < 78 for xmin[1,5]x_{min} \in [1, 5].

To find the range of g(x)g(x) on [1,5][1, 5], we find g(x)g'(x):

g(x)=33x2=3(1x2)g'(x) = 3 - 3x^2 = 3(1-x^2).

For x[1,5]x \in [1, 5], x21x^2 \ge 1, so 1x201-x^2 \le 0. Thus g(x)0g'(x) \le 0, which means g(x)g(x) is a decreasing function on [1,5][1, 5].

The maximum value of g(x)g(x) in this interval occurs at x=1x=1:

g(1)=1(312)=2g(1) = 1(3-1^2) = 2.

The minimum value of g(x)g(x) in this interval occurs at x=5x=5:

g(5)=5(352)=5(325)=5(22)=110g(5) = 5(3-5^2) = 5(3-25) = 5(-22) = -110.

So, for xmin[1,5]x_{min} \in [1, 5], we have 110g(xmin)2-110 \le g(x_{min}) \le 2.

Since g(xmin)2g(x_{min}) \le 2, the condition g(xmin)<78g(x_{min}) < 78 is always satisfied.

Therefore, f(xmin)<0f(x_{min}) < 0 is always true for xmin[1,5]x_{min} \in [1, 5].

The only constraint on aa is 0.4a<20.4 \le a < 2.

The question asks for the "sum of all possible value(s) of 'a'". If 'a' is a real number, there are infinitely many values in this interval, and their sum is undefined. This phrasing typically implies that 'a' must be an integer, or specific discrete values are expected. In the context of JEE/NEET, if not explicitly stated, integer values are often implied for "sum of values" questions.

Assuming 'a' is an integer:

The integers in the interval [0.4,2)[0.4, 2) are a=1a=1.

Let's verify a=1a=1:

If a=1a=1, then a3=2a-3 = -2.

xmin=(2)+(2)21=2+41=2+3x_{min} = -(-2) + \sqrt{(-2)^2 - 1} = 2 + \sqrt{4-1} = 2 + \sqrt{3}.

1<2+32+1.732=3.73251 < 2+\sqrt{3} \approx 2+1.732 = 3.732 \le 5. This satisfies xmin[1,5]x_{min} \in [1, 5].

Also, f(2+3)=(2+3)(3(2+3)2)613f(2+\sqrt{3}) = \frac{(2+\sqrt{3})(3-(2+\sqrt{3})^2)}{6} - 13.

(2+3)2=4+3+43=7+43(2+\sqrt{3})^2 = 4+3+4\sqrt{3} = 7+4\sqrt{3}.

3(7+43)=4433-(7+4\sqrt{3}) = -4-4\sqrt{3}.

f(2+3)=(2+3)(443)613=4(2+3)(1+3)613f(2+\sqrt{3}) = \frac{(2+\sqrt{3})(-4-4\sqrt{3})}{6} - 13 = \frac{-4(2+\sqrt{3})(1+\sqrt{3})}{6} - 13

=2(2+23+3+3)313=2(5+33)313= \frac{-2(2+2\sqrt{3}+\sqrt{3}+3)}{3} - 13 = \frac{-2(5+3\sqrt{3})}{3} - 13

=1063313=1032313=49323= \frac{-10-6\sqrt{3}}{3} - 13 = -\frac{10}{3} - 2\sqrt{3} - 13 = -\frac{49}{3} - 2\sqrt{3}.

Since 49316.33\frac{49}{3} \approx 16.33 and 233.462\sqrt{3} \approx 3.46, f(xmin)f(x_{min}) is clearly negative.

Thus, a=1a=1 is the only possible integer value for 'a'.

The sum of all possible value(s) of 'a' is 1.

The final answer is 1\boxed{1}.

Explanation of the solution:

  1. Find Critical Points: Calculate the first derivative f(x)f'(x) and set it to zero to find the critical points. f(x)=x2+2(a3)x+1=0f'(x) = x^2 + 2(a-3)x + 1 = 0.
  2. Determine Local Minimum: Calculate the second derivative f(x)=2x+2(a3)f''(x) = 2x + 2(a-3). The local minimum occurs at the root xminx_{min} where f(xmin)>0f''(x_{min}) > 0. This root is xmin=(a3)+(a3)21x_{min} = -(a-3) + \sqrt{(a-3)^2 - 1}.
  3. Conditions for Existence of Local Minimum: For real roots and a local minimum to exist (not an inflection point), the discriminant D=4((a3)21)D = 4((a-3)^2 - 1) must be strictly positive, i.e., D>0D > 0. This implies a3>1|a-3| > 1, which means a<2a < 2 or a>4a > 4.
  4. Condition on xminx_{min} interval: The local minimum must lie in the interval [1,5][1, 5].
    • If a>4a > 4, then xmin<0x_{min} < 0, which contradicts xmin[1,5]x_{min} \in [1, 5]. So, no solutions for a>4a > 4.
    • If a<2a < 2, let m=3am = 3-a. Then m>1m > 1. The local minimum xmin=m+m21x_{min} = m + \sqrt{m^2-1}. We need 1m+m2151 \le m + \sqrt{m^2-1} \le 5. The condition m>1m > 1 ensures m+m21>1m + \sqrt{m^2-1} > 1. The condition m+m215m + \sqrt{m^2-1} \le 5 leads to m2.6m \le 2.6. Substituting back m=3am=3-a, we get 0.4a<20.4 \le a < 2.
  5. Condition on f(xmin)f(x_{min}): The problem states "negative point of local minimum", which implies f(xmin)<0f(x_{min}) < 0. We expressed f(xmin)f(x_{min}) in terms of xminx_{min} as f(xmin)=xmin(3xmin2)613f(x_{min}) = \frac{x_{min}(3-x_{min}^2)}{6} - 13. For xmin[1,5]x_{min} \in [1, 5], the function g(xmin)=xmin(3xmin2)g(x_{min}) = x_{min}(3-x_{min}^2) ranges from 110-110 (at xmin=5x_{min}=5) to 22 (at xmin=1x_{min}=1). Since g(xmin)2g(x_{min}) \le 2, then g(xmin)6132613=1313=383\frac{g(x_{min})}{6} - 13 \le \frac{2}{6} - 13 = \frac{1}{3} - 13 = -\frac{38}{3}, which is always less than 0. Thus, f(xmin)<0f(x_{min}) < 0 is always satisfied for xmin[1,5]x_{min} \in [1, 5].
  6. Find 'a' values: The overall condition for 'a' is 0.4a<20.4 \le a < 2. Assuming 'a' is an integer, the only possible value is a=1a=1.
  7. Sum of 'a' values: The sum is 1.