Solveeit Logo

Question

Question: Let $\bar{u}$ be a vector coplanar with the vectors $\bar{a} = 2\hat{i} +3\hat{j}-\hat{k}$ and $\bar...

Let uˉ\bar{u} be a vector coplanar with the vectors aˉ=2i^+3j^k^\bar{a} = 2\hat{i} +3\hat{j}-\hat{k} and bˉ=j^+k^\bar{b} = \hat{j} + \hat{k}. If uˉ\bar{u} is perpendicular

to aˉ\bar{a} and uˉ.bˉ=24\bar{u}.\bar{b} = 24, then uˉ2=|\bar{u}|^2 =

A

336

B

315

C

256

D

84

Answer

336

Explanation

Solution

To solve this problem:

  1. Express u\vec{u} as a linear combination of a\vec{a} and b\vec{b}:
    u=ma+nb\vec{u} = m\vec{a} + n\vec{b}.

  2. Use the perpendicularity condition ua=0\vec{u} \cdot \vec{a} = 0 to find a relationship between mm and nn.

    • Compute aa=22+32+(1)2=14\vec{a} \cdot \vec{a} = 2^2 + 3^2 + (-1)^2 = 14 and ab=(2)(0)+(3)(1)+(1)(1)=2\vec{a} \cdot \vec{b} = (2)(0) + (3)(1) + (-1)(1) = 2.
    • This gives 14m+2n=014m + 2n = 0, which simplifies to n=7mn = -7m.
  3. Use the condition ub=24\vec{u} \cdot \vec{b} = 24 to solve for mm and nn.

    • We have ub=m(ab)+n(bb)=2m+2n=24\vec{u} \cdot \vec{b} = m(\vec{a} \cdot \vec{b}) + n(\vec{b} \cdot \vec{b}) = 2m + 2n = 24.
    • Substituting n=7mn = -7m, we get 2m+2(7m)=2m14m=12m=242m + 2(-7m) = 2m - 14m = -12m = 24, so m=2m = -2.
    • Then, n=7(2)=14n = -7(-2) = 14.
  4. Compute u=2a+14b\vec{u} = -2\vec{a} + 14\vec{b}.

  5. Calculate u2|\vec{u}|^2:

    • u2=(2a+14b)(2a+14b)=4a2+196b256(ab)|\vec{u}|^2 = (-2\vec{a} + 14\vec{b}) \cdot (-2\vec{a} + 14\vec{b}) = 4|\vec{a}|^2 + 196|\vec{b}|^2 - 56(\vec{a} \cdot \vec{b}).
    • Substitute the computed values: a2=14|\vec{a}|^2 = 14, b2=2|\vec{b}|^2 = 2, ab=2\vec{a} \cdot \vec{b} = 2.
    • u2=4(14)+196(2)56(2)=56+392112=336|\vec{u}|^2 = 4(14) + 196(2) - 56(2) = 56 + 392 - 112 = 336.

Therefore, u2=336|\vec{u}|^2 = 336.