Question
Question: Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmat...
Let A=121−1111−31 and 10B=4−5120−22α3. If B is the inverse of A. Then α is equal to

Answer
α=5
Explanation
Solution
-
Find det A:
det(A)=1det[11−31]−(−1)det[21−31]+1det[2111] =1(1⋅1−(−3)⋅1)+1(2⋅1−(−3)⋅1)+1(2⋅1−1⋅1) =1(4)+1(5)+1(1)=10. -
Find the adjugate of A:
-
C11=+det[11−31]=4
-
C12=−det[21−31]=−5
-
C13=+det[2111]=1
-
C21=−det[−1111]=2
-
C22=+det[1111]=0
-
C23=−det[11−11]=−2
-
C31=+det[−111−3]=2
-
C32=−det[121−3]=5
-
C33=+det[12−11]=3
The cofactor matrix is:
422−5051−23Taking its transpose (to get the adjugate):
adj(A)=4−5120−2253 -
-
Compute A−1:
A−1=detA1adj(A)=1014−5120−2253 -
Given that B is A−1 and 10B is:
10B=4−5120−22α3Equate the (2,3) entry: In 10A−1 the (2,3) entry is 5, hence:
α=5.