Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmat...

Let A=[111213111]A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} and 10B=[42250α123]10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}. If B is the inverse of A. Then α\alpha is equal to

Answer

α=5\alpha = 5

Explanation

Solution

  1. Find det A:

    det(A)=1det[1311](1)det[2311]+1det[2111]\det(A) = 1\det\begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix} - (-1)\det\begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix} + 1\det\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} =1(11(3)1)+1(21(3)1)+1(2111)= 1(1\cdot1- (-3)\cdot1) + 1(2\cdot1-(-3)\cdot1) + 1(2\cdot1-1\cdot1) =1(4)+1(5)+1(1)=10.= 1(4) + 1(5) + 1(1) = 10.
  2. Find the adjugate of A:

    • C11=+det[1311]=4C_{11} = +\det\begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix} = 4

    • C12=det[2311]=5C_{12} = -\det\begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix} = -5

    • C13=+det[2111]=1C_{13} = +\det\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = 1

    • C21=det[1111]=2C_{21} = -\det\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = 2

    • C22=+det[1111]=0C_{22} = +\det\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0

    • C23=det[1111]=2C_{23} = -\det\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = -2

    • C31=+det[1113]=2C_{31} = +\det\begin{bmatrix} -1 & 1 \\ 1 & -3 \end{bmatrix} = 2

    • C32=det[1123]=5C_{32} = -\det\begin{bmatrix} 1 & 1 \\ 2 & -3 \end{bmatrix} = 5

    • C33=+det[1121]=3C_{33} = +\det\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = 3

    The cofactor matrix is:

    [451202253]\begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix}

    Taking its transpose (to get the adjugate):

    adj(A)=[422505123]\text{adj}(A) = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}
  3. Compute A1A^{-1}:

    A1=1detAadj(A)=110[422505123]A^{-1} = \frac{1}{\det A}\text{adj}(A) = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}
  4. Given that BB is A1A^{-1} and 10B10B is:

    10B=[42250α123]10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}

    Equate the (2,3) entry: In 10A110A^{-1} the (2,3) entry is 55, hence:

    α=5.\alpha = 5.