Question
Question: Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmat...
Let A=121−1111−31 and 10B=4−5120−22α3. If B is the inverse of A. Then α is equal to

Answer
5
Explanation
Solution
Given
A=121−1111−31and10B=4−5120−22α3,with B=A−1. Thus,
A−1=1014−5120−22α3.Since AA−1=I, we have:
A1014−5120−22α3=I⟹A4−5120−22α3=10I.Step 1: Compute the first row of AX (where X denotes the given 10B matrix):
- Row 1 of A is [1,−1,1].
For the third column:
(1)(2)+(−1)(α)+(1)(3)=2−α+3=5−α.Since this entry must equal 0 (as it is an off-diagonal element of 10I), we get:
5−α=0⟹α=5.