Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmat...

Let A=[111213111]A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} and 10B=[42250α123]10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}. If BB is the inverse of AA. Then α\alpha is equal to

Answer

5

Explanation

Solution

Given

A=[111213111]and10B=[42250α123],A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad 10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix},

with B=A1B = A^{-1}. Thus,

A1=110[42250α123].A^{-1} = \frac{1}{10}\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}.

Since AA1=IAA^{-1} = I, we have:

A(110[42250α123])=IA[42250α123]=10I.A \left(\frac{1}{10}\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}\right) = I \quad \Longrightarrow \quad A \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix} = 10\,I.

Step 1: Compute the first row of AXAX (where XX denotes the given 10B10B matrix):

  • Row 1 of AA is [1,1,1][1, -1, 1].

For the third column:

(1)(2)+(1)(α)+(1)(3)=2α+3=5α.(1)(2) + (-1)(\alpha) + (1)(3) = 2 - \alpha + 3 = 5 - \alpha.

Since this entry must equal 0 (as it is an off-diagonal element of 10I10I), we get:

5α=0α=5.5 - \alpha = 0 \quad \Longrightarrow \quad \alpha = 5.