Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmat...

Let A=[111213111]A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} and 10B=[42250α123]10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}. If BB is the inverse of AA. Then α\alpha is equal to

Answer

5

Explanation

Solution

Given

A=[111213111]and10B=[42250α123].A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad 10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}.

Since BB is the inverse of AA, we have AB=IA \cdot B = I. Note that

B=110[42250α123].B = \frac{1}{10}\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}.

Step 1: Compute the (1,3)(1,3) entry of ABA \cdot B.

  • First row of AA: [1,1,1][1, -1, 1]
  • Third column of BB: 110[2α3]\frac{1}{10}\begin{bmatrix} 2 \\ \alpha \\ 3 \end{bmatrix}

Thus,

(1,3) entry=110(12+(1)α+13)=110(2α+3)=110(5α).(1,3) \text{ entry} = \frac{1}{10} \left(1\cdot2 + (-1)\cdot\alpha + 1\cdot3\right) = \frac{1}{10}(2 - \alpha + 3) = \frac{1}{10}(5 - \alpha).

For AB=IA \cdot B = I, the (1,3)(1,3) entry must be 0. Therefore,

5α10=05α=0α=5.\frac{5-\alpha}{10} = 0 \quad \Rightarrow \quad 5 - \alpha = 0 \quad \Rightarrow \quad \alpha = 5.

Core Explanation:

  • Set up AB=IA\cdot B=I.
  • Compute (1,3)(1,3) element: 5α10=0\frac{5-\alpha}{10}=0.
  • Solve for α\alpha: α=5\alpha=5.

Answer: α=5\alpha = 5.