Question
Question: Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmat...
Let A=121−1111−31 and 10B=4−5120−22α3. If B is the inverse of A. Then α is equal to

Answer
5
Explanation
Solution
Given
A=121−1111−31and10B=4−5120−22α3.Since B is the inverse of A, we have A⋅B=I. Note that
B=1014−5120−22α3.Step 1: Compute the (1,3) entry of A⋅B.
- First row of A: [1,−1,1]
- Third column of B: 1012α3
Thus,
(1,3) entry=101(1⋅2+(−1)⋅α+1⋅3)=101(2−α+3)=101(5−α).For A⋅B=I, the (1,3) entry must be 0. Therefore,
105−α=0⇒5−α=0⇒α=5.Core Explanation:
- Set up A⋅B=I.
- Compute (1,3) element: 105−α=0.
- Solve for α: α=5.
Answer: α=5.