Solveeit Logo

Question

Question: If $y = \sqrt{\frac{1-\sin^{-1}x}{1+\sin^{-1}x}}$, then $\left(\frac{dy}{dx}\right)$ at $x = 0$ is...

If y=1sin1x1+sin1xy = \sqrt{\frac{1-\sin^{-1}x}{1+\sin^{-1}x}}, then (dydx)\left(\frac{dy}{dx}\right) at x=0x = 0 is

A

1

B

2

C

-2

D

-1

Answer

-1

Explanation

Solution

Let u=sin1xu=\sin^{-1}x. Then y=1u1+uy = \sqrt{\frac{1-u}{1+u}}.
Using logarithmic differentiation:

  1. Take logarithm:

    lny=12[ln(1u)ln(1+u)]\ln y = \frac{1}{2} \left[\ln(1-u) - \ln(1+u)\right]
  2. Differentiate with respect to uu:

    1ydydu=12[11u11+u]\frac{1}{y}\frac{dy}{du} = \frac{1}{2}\left[-\frac{1}{1-u} - \frac{1}{1+u}\right] dydu=y[12(11u+11+u)]\frac{dy}{du} = y \left[-\frac{1}{2} \left(\frac{1}{1-u} + \frac{1}{1+u}\right)\right]
  3. At x=0x = 0, we have u=sin1(0)=0u = \sin^{-1}(0) = 0 and

    y=101+0=1.y = \sqrt{\frac{1-0}{1+0}} = 1.

    So,

    dyduu=0=12(11+11)=12(2)=1.\left.\frac{dy}{du}\right|_{u=0} = -\frac{1}{2}\left(\frac{1}{1} + \frac{1}{1}\right) = -\frac{1}{2}(2) = -1.
  4. Now, differentiate u=sin1xu = \sin^{-1}x with respect to xx:

    dudx=11x2,\frac{du}{dx} = \frac{1}{\sqrt{1-x^2}},

    and at x=0x = 0, dudx=1\frac{du}{dx} = 1.

  5. Therefore, by the chain rule:

    dydx=dydududx=1×1=1.\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -1 \times 1 = -1.