Question
Question: If $y = \sqrt{\frac{1-\sin^{-1}x}{1+\sin^{-1}x}}$, then $\left(\frac{dy}{dx}\right)$ at $x = 0$ is...
If y=1+sin−1x1−sin−1x, then (dxdy) at x=0 is

A
1
B
2
C
-2
D
-1
Answer
-1
Explanation
Solution
Let u=sin−1x. Then y=1+u1−u.
Using logarithmic differentiation:
-
Take logarithm:
lny=21[ln(1−u)−ln(1+u)] -
Differentiate with respect to u:
y1dudy=21[−1−u1−1+u1] dudy=y[−21(1−u1+1+u1)] -
At x=0, we have u=sin−1(0)=0 and
y=1+01−0=1.So,
dudyu=0=−21(11+11)=−21(2)=−1. -
Now, differentiate u=sin−1x with respect to x:
dxdu=1−x21,and at x=0, dxdu=1.
-
Therefore, by the chain rule:
dxdy=dudy⋅dxdu=−1×1=−1.