Solveeit Logo

Question

Question: 42. If $\tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi$, then which of the following statement is tru...

  1. If tan1a+tan1b+tan1c=π\tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi, then which of the following statement is true ?
A

a + b − c = abc

B

a + b + c = 2abc

C

abc = 1

D

a + b + c = abc

Answer

a + b + c = abc

Explanation

Solution

Let

X=tan1a,Y=tan1b,Z=tan1cX = \tan^{-1} a,\quad Y = \tan^{-1} b,\quad Z = \tan^{-1} c

Given,

X+Y+Z=πX+Y+Z = \pi

Using the tangent addition formula for two angles:

tan(X+Y)=a+b1ab\tan (X+Y) = \frac{a+b}{1-ab}

Then,

tan(X+Y+Z)=tan(X+Y)+c1ctan(X+Y)=0\tan (X+Y+Z) = \frac{\tan(X+Y) + c}{1 - c\,\tan(X+Y)} = 0

For the fraction to be 0, the numerator must be 0, so:

a+b1ab+c=0a+b+c(1ab)=0\frac{a+b}{1-ab} + c = 0 \quad \Longrightarrow \quad a+b + c(1-ab) = 0

Expanding,

a+b+cabc=0a+b+c=abca+b+c - abc = 0 \quad \Longrightarrow \quad a+b+c = abc