Solveeit Logo

Question

Question: If $I_{1} = \int_{0}^{1} \frac{x^{5/2}(1-x)^{7/2}}{12} dx$; $I_{2} = \int_{0}^{1} \frac{x^{5/2}(1-x)...

If I1=01x5/2(1x)7/212dxI_{1} = \int_{0}^{1} \frac{x^{5/2}(1-x)^{7/2}}{12} dx; I2=01x5/2(1x)7/2(3+x)8dxI_{2} = \int_{0}^{1} \frac{x^{5/2}(1-x)^{7/2}}{(3+x)^{8}} dx then

A

I2=1443I1I_{2} = 144\sqrt{3}I_{1}

B

I1=8643I2I_{1} = 864\sqrt{3}I_{2}

C

I1=I2I_{1} = I_{2}

D

I1I2=1443I_{1}I_{2} = 144\sqrt{3}

Answer

I1=8643I2I_{1} = 864\sqrt{3}I_{2}

Explanation

Solution

Let I1=01x5/2(1x)7/212dxI_{1} = \int_{0}^{1} \frac{x^{5/2}(1-x)^{7/2}}{12} dx and I2=01x5/2(1x)7/2(3+x)8dxI_{2} = \int_{0}^{1} \frac{x^{5/2}(1-x)^{7/2}}{(3+x)^{8}} dx.

First, let's evaluate I1I_1. The integral is related to the Beta function, B(m,n)=01xm1(1x)n1dx=Γ(m)Γ(n)Γ(m+n)B(m, n) = \int_{0}^{1} x^{m-1}(1-x)^{n-1} dx = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}. In the integral part of I1I_1, we have x5/2(1x)7/2x^{5/2}(1-x)^{7/2}. Comparing with xm1(1x)n1x^{m-1}(1-x)^{n-1}, we have m1=5/2    m=7/2m-1 = 5/2 \implies m = 7/2 and n1=7/2    n=9/2n-1 = 7/2 \implies n = 9/2. So, 01x5/2(1x)7/2dx=B(7/2,9/2)\int_{0}^{1} x^{5/2}(1-x)^{7/2} dx = B(7/2, 9/2). I1=112B(7/2,9/2)=112Γ(7/2)Γ(9/2)Γ(7/2+9/2)=112Γ(7/2)Γ(9/2)Γ(8)I_1 = \frac{1}{12} B(7/2, 9/2) = \frac{1}{12} \frac{\Gamma(7/2)\Gamma(9/2)}{\Gamma(7/2+9/2)} = \frac{1}{12} \frac{\Gamma(7/2)\Gamma(9/2)}{\Gamma(8)}. Using the property Γ(z+1)=zΓ(z)\Gamma(z+1) = z\Gamma(z) and Γ(1/2)=π\Gamma(1/2) = \sqrt{\pi}: Γ(7/2)=52Γ(5/2)=5232Γ(3/2)=523212Γ(1/2)=158π\Gamma(7/2) = \frac{5}{2}\Gamma(5/2) = \frac{5}{2} \cdot \frac{3}{2}\Gamma(3/2) = \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}\Gamma(1/2) = \frac{15}{8}\sqrt{\pi}. Γ(9/2)=72Γ(7/2)=72158π=10516π\Gamma(9/2) = \frac{7}{2}\Gamma(7/2) = \frac{7}{2} \cdot \frac{15}{8}\sqrt{\pi} = \frac{105}{16}\sqrt{\pi}. Γ(8)=7!=5040\Gamma(8) = 7! = 5040. B(7/2,9/2)=(158π)(10516π)5040=15×1058×16π5040=1575π128×5040B(7/2, 9/2) = \frac{(\frac{15}{8}\sqrt{\pi})(\frac{105}{16}\sqrt{\pi})}{5040} = \frac{\frac{15 \times 105}{8 \times 16}\pi}{5040} = \frac{1575\pi}{128 \times 5040}. 15755040=225×7720×7=225720=45×5144×5=45144=5×916×9=516\frac{1575}{5040} = \frac{225 \times 7}{720 \times 7} = \frac{225}{720} = \frac{45 \times 5}{144 \times 5} = \frac{45}{144} = \frac{5 \times 9}{16 \times 9} = \frac{5}{16}. So, B(7/2,9/2)=5π128B(7/2, 9/2) = \frac{5\pi}{128}. I1=1125π128=5π1536I_1 = \frac{1}{12} \cdot \frac{5\pi}{128} = \frac{5\pi}{1536}.

Now, let's evaluate I2=01x5/2(1x)7/2(3+x)8dxI_2 = \int_{0}^{1} \frac{x^{5/2}(1-x)^{7/2}}{(3+x)^{8}} dx. This integral is of the form 01xa1(1x)b1(c+dx)a+bdx\int_{0}^{1} \frac{x^{a-1}(1-x)^{b-1}}{(c+dx)^{a+b}} dx. Here, a1=5/2    a=7/2a-1=5/2 \implies a=7/2, b1=7/2    b=9/2b-1=7/2 \implies b=9/2. a+b=7/2+9/2=16/2=8a+b = 7/2 + 9/2 = 16/2 = 8. The denominator is (3+x)8(3+x)^8, which matches (c+dx)a+b(c+dx)^{a+b} with c=3c=3 and d=1d=1. We use the integral formula: 01xa1(1x)b1(c+dx)a+bdx=1(c+d)acbB(a,b)\int_{0}^{1} \frac{x^{a-1}(1-x)^{b-1}}{(c+dx)^{a+b}} dx = \frac{1}{(c+d)^a c^b} B(a, b). In our case, a=7/2a=7/2, b=9/2b=9/2, c=3c=3, d=1d=1. I2=1(3+1)7/239/2B(7/2,9/2)=147/239/2B(7/2,9/2)I_2 = \frac{1}{(3+1)^{7/2} 3^{9/2}} B(7/2, 9/2) = \frac{1}{4^{7/2} 3^{9/2}} B(7/2, 9/2). 47/2=(22)7/2=27=1284^{7/2} = (2^2)^{7/2} = 2^7 = 128. 39/2=343=8133^{9/2} = 3^4 \sqrt{3} = 81\sqrt{3}. I2=1128813B(7/2,9/2)I_2 = \frac{1}{128 \cdot 81\sqrt{3}} B(7/2, 9/2). We know B(7/2,9/2)=5π128B(7/2, 9/2) = \frac{5\pi}{128}. I2=11288135π128=5π1282813=5π16384813I_2 = \frac{1}{128 \cdot 81\sqrt{3}} \cdot \frac{5\pi}{128} = \frac{5\pi}{128^2 \cdot 81\sqrt{3}} = \frac{5\pi}{16384 \cdot 81\sqrt{3}}.

Now let's find the relationship between I1I_1 and I2I_2. I1=112B(7/2,9/2)I_1 = \frac{1}{12} B(7/2, 9/2). I2=1128813B(7/2,9/2)I_2 = \frac{1}{128 \cdot 81\sqrt{3}} B(7/2, 9/2). Let B=B(7/2,9/2)B = B(7/2, 9/2). I1=112BI_1 = \frac{1}{12} B. I2=1128813BI_2 = \frac{1}{128 \cdot 81\sqrt{3}} B. Divide I1I_1 by I2I_2: I1I2=112B1128813B=112(128813)=12881312=128273343=32273=8643\frac{I_1}{I_2} = \frac{\frac{1}{12} B}{\frac{1}{128 \cdot 81\sqrt{3}} B} = \frac{1}{12} \cdot (128 \cdot 81\sqrt{3}) = \frac{128 \cdot 81\sqrt{3}}{12} = \frac{128 \cdot 27 \cdot 3\sqrt{3}}{4 \cdot 3} = 32 \cdot 27\sqrt{3} = 864\sqrt{3}. So, I1=8643I2I_1 = 864\sqrt{3} I_2.