Question
Question: Differential co-efficient of $e^{sin^{-1}x}$ w.r.t. $x sin^{-1}x$ is...
Differential co-efficient of esin−1x w.r.t. xsin−1x is

A
sin−1x
B
esin−1x
C
ecos−1x
D
cos−1x
Answer
x+1−x2sin−1xesin−1x
Explanation
Solution
We wish to find
d[xsin−1x]d(esin−1x)=d(xsin−1x)/dxd(esin−1x)/dx.Step 1. Write
f(x)=esin−1x.Differentiate with respect to x using the chain rule:
f′(x)=esin−1x⋅dxd(sin−1x)=esin−1x⋅1−x21.Step 2. Let
g(x)=xsin−1x.Differentiate using the product rule:
g′(x)=sin−1x+x⋅1−x21=sin−1x+1−x2x.Step 3. Hence the required derivative is
d(xsin−1x)d(esin−1x)=g′(x)f′(x)=sin−1x+1−x2xesin−1x/1−x2.Multiply numerator and denominator by 1−x2 to write it in a slightly neater form:
d(xsin−1x)d(esin−1x)=x+1−x2sin−1xesin−1x.Final Answer:
x+1−x2sin−1xesin−1x.None of the given options is correct.