Solveeit Logo

Question

Question: Differential co-efficient of $e^{sin^{-1}x}$ w.r.t. $x sin^{-1}x$ is...

Differential co-efficient of esin1xe^{sin^{-1}x} w.r.t. xsin1xx sin^{-1}x is

A

sin1xsin^{-1}x

B

esin1xe^{sin^{-1}x}

C

ecos1xe^{cos^{-1}x}

D

cos1xcos^{-1}x

Answer

esin1xx+1x2sin1x\frac{e^{\sin^{-1}x}}{x+\sqrt{1-x^2}\,\sin^{-1}x}

Explanation

Solution

We wish to find

dd[xsin1x](esin1x)=d(esin1x)/dxd(xsin1x)/dx.\frac{d}{d\,[x\sin^{-1}x]}\Bigl(e^{\sin^{-1}x}\Bigr) =\frac{d\Bigl(e^{\sin^{-1}x}\Bigr)/dx}{d\Bigl(x\sin^{-1}x\Bigr)/dx}.

Step 1. Write

f(x)=esin1x.f(x)=e^{\sin^{-1}x}\,.

Differentiate with respect to xx using the chain rule:

f(x)=esin1xddx(sin1x)=esin1x11x2.f'(x)= e^{\sin^{-1}x}\cdot \frac{d}{dx}(\sin^{-1}x) =e^{\sin^{-1}x}\cdot\frac{1}{\sqrt{1-x^2}}\,.

Step 2. Let

g(x)=xsin1x.g(x)=x\sin^{-1}x\,.

Differentiate using the product rule:

g(x)=sin1x+x11x2=sin1x+x1x2.g'(x)= \sin^{-1}x+ x\cdot\frac{1}{\sqrt{1-x^2}} =\sin^{-1}x+\frac{x}{\sqrt{1-x^2}}\,.

Step 3. Hence the required derivative is

d(esin1x)d(xsin1x)=f(x)g(x)=esin1x/1x2sin1x+x1x2.\frac{d\,(e^{\sin^{-1}x})}{d\,(x\sin^{-1}x)} =\frac{f'(x)}{g'(x)} =\frac{e^{\sin^{-1}x}/\sqrt{1-x^2}}{\sin^{-1}x+\dfrac{x}{\sqrt{1-x^2}}}\,.

Multiply numerator and denominator by 1x2\sqrt{1-x^2} to write it in a slightly neater form:

d(esin1x)d(xsin1x)=esin1xx+1x2sin1x.\frac{d\,(e^{\sin^{-1}x})}{d\,(x\sin^{-1}x)} =\frac{e^{\sin^{-1}x}}{x+\sqrt{1-x^2}\,\sin^{-1}x}\,.

Final Answer:

esin1xx+1x2sin1x.\frac{e^{\sin^{-1}x}}{x+\sqrt{1-x^2}\,\sin^{-1}x}\,.

None of the given options is correct.