Solveeit Logo

Question

Mathematics Question on Sequence and series

4,11,21,34….. Find the value of (S29S9)60\frac{(S_{29}-S_{9})}{60}?

Answer

The correct answer is 223
S=4+11+21+34+........+TnS=4+11+21+34+ ........ +T_n
S=4+11+21+.....+Tn1+TnTn=4+7+10+13+.....+(Tn+Tn1)S= \quad4+11+21+.....+Tn-1+Tn\\\\\overline{\quad Tn=4+7+10+13+.....+(Tn+Tn-1)}
Tn=4+(n1)2[14+(n2)3]T_n=4+\frac{(n-1)}{2} [ 14+(n-2)3]
 =4+(n1)2[8+3n]\quad\ =4+\frac{(n-1)}{2} [8+3n]
Tn=4+12(3n2+5n8)T_n=4+\frac{1}{2} (3n^2+5n-8)
Tn=Sn=32n2+52n∑T_n = S_n=\frac{3}{2}∑n^2 + \frac{5}{2}∑n
  =32n(n+1)(2n+1)6+52n(n+1)2\quad\quad\ \ =\frac{3}{2} \frac{n(n+1)(2n+1)}{6} + \frac{5}{2} \frac{n(n+1)}{2}
   S29S960=223\quad\quad\ \ \ \frac{S_{29} - S_{9}}{60} = 223