Solveeit Logo

Question

Question: The particular solution of the differential equation $\frac{dy}{dx}-e^x = ye^x$, when $x = 0$ and $y...

The particular solution of the differential equation dydxex=yex\frac{dy}{dx}-e^x = ye^x, when x=0x = 0 and y=1y = 1 is

A

log(y+12)=ex1\log (\frac{y+1}{2}) = e^x - 1

B

log(y1)=ex1\log (y - 1) = e^x - 1

C

log2(y1)=ex1\log 2(y - 1) = e^x - 1

D

log(y+12)=ex212\log (\frac{y+1}{2}) = \frac{e^x}{2} - \frac{1}{2}

Answer

log(y+12)=ex1\log (\frac{y+1}{2}) = e^x - 1

Explanation

Solution

Given the differential equation:

dydxex=yex\frac{dy}{dx} - e^x = ye^x

Rearrange to:

dydx=ex(y+1)\frac{dy}{dx} = e^x(y+1)

Separate variables:

dyy+1=exdx\frac{dy}{y+1} = e^x \, dx

Integrate both sides:

dyy+1=exdxlny+1=ex+C\int \frac{dy}{y+1} = \int e^x \, dx \quad \Rightarrow \quad \ln|y+1| = e^x + C

Apply the initial condition x=0x=0 and y=1y=1:

ln1+1=e0+Cln2=1+CC=ln21\ln|1+1| = e^0 + C \quad \Rightarrow \quad \ln 2 = 1 + C \quad \Rightarrow \quad C = \ln2 - 1

Thus, the particular solution becomes:

lny+1=ex+ln21ln(y+12)=ex1\ln|y+1| = e^x + \ln2 - 1 \quad \Rightarrow \quad \ln\left(\frac{y+1}{2}\right) = e^x - 1