Solveeit Logo

Question

Question: The integral $\int \frac{(1-\frac{1}{\sqrt{3}})(\cos x - \sin x)}{1+\frac{2}{\sqrt{3}}\sin 2x} dx$ i...

The integral (113)(cosxsinx)1+23sin2xdx\int \frac{(1-\frac{1}{\sqrt{3}})(\cos x - \sin x)}{1+\frac{2}{\sqrt{3}}\sin 2x} dx is equal to:

A

12logetan(x2+π12)tan(x2+π6)+C\frac{1}{2}\log_e \left| \frac{\tan(\frac{x}{2}+\frac{\pi}{12})}{\tan(\frac{x}{2}+\frac{\pi}{6})} \right| +C

B

12logetan(x2+π6)tan(x2+π3)+C\frac{1}{2}\log_e \left| \frac{\tan(\frac{x}{2}+\frac{\pi}{6})}{\tan(\frac{x}{2}+\frac{\pi}{3})} \right| +C

C

logetan(x2+π6)tan(x2+π12)+C\log_e \left| \frac{\tan(\frac{x}{2}+\frac{\pi}{6})}{\tan(\frac{x}{2}+\frac{\pi}{12})} \right| +C

D

12logetan(x2π12)tan(x2π6)+C\frac{1}{2}\log_e \left| \frac{\tan(\frac{x}{2}-\frac{\pi}{12})}{\tan(\frac{x}{2}-\frac{\pi}{6})} \right| +C

Answer

12logetan(x2+π12)tan(x2+π6)+C\frac{1}{2}\log_e \left| \frac{\tan(\frac{x}{2}+\frac{\pi}{12})}{\tan(\frac{x}{2}+\frac{\pi}{6})} \right| +C

Explanation

Solution

The given integral is I=(113)(cosxsinx)1+23sin2xdxI = \int \frac{(1-\frac{1}{\sqrt{3}})(\cos x - \sin x)}{1+\frac{2}{\sqrt{3}}\sin 2x} dx.

First, simplify the constant term: 113=3131-\frac{1}{\sqrt{3}} = \frac{\sqrt{3}-1}{\sqrt{3}}. So, I=313cosxsinx1+23sin2xdxI = \frac{\sqrt{3}-1}{\sqrt{3}} \int \frac{\cos x - \sin x}{1+\frac{2}{\sqrt{3}}\sin 2x} dx.

Let's use the substitution t=sinx+cosxt = \sin x + \cos x. Then, dt=(cosxsinx)dxdt = (\cos x - \sin x) dx. Also, t2=(sinx+cosx)2=sin2x+cos2x+2sinxcosx=1+sin2xt^2 = (\sin x + \cos x)^2 = \sin^2 x + \cos^2 x + 2\sin x \cos x = 1 + \sin 2x. From this, sin2x=t21\sin 2x = t^2 - 1.

Substitute these into the integral: I=313dt1+23(t21)I = \frac{\sqrt{3}-1}{\sqrt{3}} \int \frac{dt}{1+\frac{2}{\sqrt{3}}(t^2-1)} I=313dt3+2(t21)3I = \frac{\sqrt{3}-1}{\sqrt{3}} \int \frac{dt}{\frac{\sqrt{3}+2(t^2-1)}{\sqrt{3}}} I=(31)dt3+2t22I = (\sqrt{3}-1) \int \frac{dt}{\sqrt{3}+2t^2-2} I=(31)dt2t2+(32)I = (\sqrt{3}-1) \int \frac{dt}{2t^2 + (\sqrt{3}-2)} Factor out 2 from the denominator: I=312dtt2+322I = \frac{\sqrt{3}-1}{2} \int \frac{dt}{t^2 + \frac{\sqrt{3}-2}{2}} We can rewrite 322\frac{\sqrt{3}-2}{2} as 232-\frac{2-\sqrt{3}}{2}. I=312dtt2232I = \frac{\sqrt{3}-1}{2} \int \frac{dt}{t^2 - \frac{2-\sqrt{3}}{2}} Notice that 232=4234=(31)24\frac{2-\sqrt{3}}{2} = \frac{4-2\sqrt{3}}{4} = \frac{(\sqrt{3}-1)^2}{4}. So, let a2=(31)24a^2 = \frac{(\sqrt{3}-1)^2}{4}, which means a=312a = \frac{\sqrt{3}-1}{2}. The integral is of the form dxx2a2=12alogxax+a+C\int \frac{dx}{x^2-a^2} = \frac{1}{2a} \log \left| \frac{x-a}{x+a} \right| + C. I=31212alogtat+a+CI = \frac{\sqrt{3}-1}{2} \cdot \frac{1}{2a} \log \left| \frac{t-a}{t+a} \right| + C I=31212312logt312t+312+CI = \frac{\sqrt{3}-1}{2} \cdot \frac{1}{2 \cdot \frac{\sqrt{3}-1}{2}} \log \left| \frac{t - \frac{\sqrt{3}-1}{2}}{t + \frac{\sqrt{3}-1}{2}} \right| + C I=312131log2t(31)2t+(31)+CI = \frac{\sqrt{3}-1}{2} \cdot \frac{1}{\sqrt{3}-1} \log \left| \frac{2t - (\sqrt{3}-1)}{2t + (\sqrt{3}-1)} \right| + C I=12log2t(31)2t+(31)+CI = \frac{1}{2} \log \left| \frac{2t - (\sqrt{3}-1)}{2t + (\sqrt{3}-1)} \right| + C.

Now, substitute back t=sinx+cosxt = \sin x + \cos x. I=12log2(sinx+cosx)(31)2(sinx+cosx)+(31)+CI = \frac{1}{2} \log \left| \frac{2(\sin x + \cos x) - (\sqrt{3}-1)}{2(\sin x + \cos x) + (\sqrt{3}-1)} \right| + C.

To match the options, we need to convert this expression into terms of tan(x2+α)\tan(\frac{x}{2}+\alpha). We know that sinx+cosx=2sin(x+π4)\sin x + \cos x = \sqrt{2} \sin(x+\frac{\pi}{4}).

After applying sum-to-product formulas and simplifying, we get:

I=12logtan(x2+π12)tan(x2+π6)+CI = \frac{1}{2} \log \left| \frac{\tan(\frac{x}{2}+\frac{\pi}{12})}{\tan(\frac{x}{2}+\frac{\pi}{6})} \right| + C.

This matches option (A).