Solveeit Logo

Question

Question: If y = cos (sin x²), then at x = $\sqrt{\frac{\pi}{2}}$, $\frac{dy}{dx}$ =...

If y = cos (sin x²), then at x = π2\sqrt{\frac{\pi}{2}}, dydx\frac{dy}{dx} =

A
  • 2
B

2

C

-2π2\sqrt{\frac{\pi}{2}}

D

0

Answer

0

Explanation

Solution

Given:

y=cos(sin(x2))y = \cos (\sin (x^2))

Differentiate using the chain rule:

dydx=sin(sinx2)cos(x2)ddx(x2)\frac{dy}{dx} = -\sin (\sin x^2) \cdot \cos(x^2) \cdot \frac{d}{dx}(x^2)

Since ddx(x2)=2x\frac{d}{dx}(x^2) = 2x, we have:

dydx=2xcos(x2)sin(sinx2)\frac{dy}{dx} = -2x \cos(x^2) \sin (\sin x^2)

At x=π2x = \sqrt{\frac{\pi}{2}},

x2=π2andcos(π2)=0.x^2 = \frac{\pi}{2} \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right)=0.

Thus,

dydx=2π20sin(sinπ2)=0.\frac{dy}{dx} = -2\sqrt{\frac{\pi}{2}} \cdot 0 \cdot \sin\left(\sin\frac{\pi}{2}\right) = 0.