Solveeit Logo

Question

Question: If log(x + y) = 2xy, then $\frac{dy}{dx}$ at x = 0 is...

If log(x + y) = 2xy, then dydx\frac{dy}{dx} at x = 0 is

A

1

B

-1

C

2

D

-2

Answer

1

Explanation

Solution

Given the equation log(x+y)=2xy\log(x + y) = 2xy.
We need to find dydx\frac{dy}{dx} at x=0x = 0.

First, find the value of yy when x=0x=0. Substitute x=0x=0 into the given equation:
log(0+y)=2(0)y\log(0 + y) = 2(0)y
log(y)=0\log(y) = 0
Since log(y)=0\log(y) = 0 implies y=e0y = e^0, we have y=1y = 1.
So, we need to find dydx\frac{dy}{dx} at the point (x,y)=(0,1)(x, y) = (0, 1).

Next, differentiate the given equation implicitly with respect to xx.
ddx(log(x+y))=ddx(2xy)\frac{d}{dx}(\log(x + y)) = \frac{d}{dx}(2xy)

Using the chain rule on the left side:
1x+yddx(x+y)=1x+y(1+dydx)\frac{1}{x+y} \cdot \frac{d}{dx}(x+y) = \frac{1}{x+y} (1 + \frac{dy}{dx})

Using the product rule on the right side:
ddx(2xy)=2ddx(xy)=2(1y+xdydx)=2y+2xdydx\frac{d}{dx}(2xy) = 2 \cdot \frac{d}{dx}(xy) = 2 (1 \cdot y + x \cdot \frac{dy}{dx}) = 2y + 2x \frac{dy}{dx}

Equating the derivatives of both sides:
1x+y(1+dydx)=2y+2xdydx\frac{1}{x+y} (1 + \frac{dy}{dx}) = 2y + 2x \frac{dy}{dx}

Now, we need to find the value of dydx\frac{dy}{dx} at the point (0,1)(0, 1). Substitute x=0x=0 and y=1y=1 into the differentiated equation:
10+1(1+dydx(0,1))=2(1)+2(0)dydx(0,1)\frac{1}{0+1} (1 + \left.\frac{dy}{dx}\right|_{(0,1)}) = 2(1) + 2(0) \left.\frac{dy}{dx}\right|_{(0,1)}
11(1+dydx(0,1))=2+0\frac{1}{1} (1 + \left.\frac{dy}{dx}\right|_{(0,1)}) = 2 + 0
1(1+dydx(0,1))=21 (1 + \left.\frac{dy}{dx}\right|_{(0,1)}) = 2
1+dydx(0,1)=21 + \left.\frac{dy}{dx}\right|_{(0,1)} = 2
dydx(0,1)=21\left.\frac{dy}{dx}\right|_{(0,1)} = 2 - 1
dydx(0,1)=1\left.\frac{dy}{dx}\right|_{(0,1)} = 1

Thus, the value of dydx\frac{dy}{dx} at x=0x=0 is 1.