Question
Question: If $A=\begin{bmatrix}0 & -\tan \alpha/2\\\tan \alpha/2 & 0\end{bmatrix}$ and $I$ is a 2×2 unit matri...
If A=[0tanα/2−tanα/20] and I is a 2×2 unit matrix, then (I−A)[cosαsinα−sinαcosα]=I+kA. The value of k is

A
-1
B
1
C
2
D
None of these
Answer
1
Explanation
Solution
Let t=tanα/2. Then A=[0t−t0]. Also, cosα=1+t21−t2 and sinα=1+t22t.
Then
I−A=[1−tt1].
Also, let M=[cosαsinα−sinαcosα]=[1+t21−t21+t22t−1+t22t1+t21−t2].
Then (I−A)M=[1−tt1][1+t21−t21+t22t−1+t22t1+t21−t2]=1+t21[1−t2+2t2−t+t3+2t−2t+t−t32t2+1−t2]=1+t21[1+t2t(1+t2)−t(1+t2)1+t2]=[1t−t1].
Also, I+kA=[1001]+k[0t−t0]=[1kt−kt1].
Therefore, [1t−t1]=[1kt−kt1], so k=1.