Solveeit Logo

Question

Question: If $A=\begin{bmatrix}0 & -\tan \alpha/2\\\tan \alpha/2 & 0\end{bmatrix}$ and $I$ is a 2×2 unit matri...

If A=[0tanα/2tanα/20]A=\begin{bmatrix}0 & -\tan \alpha/2\\\tan \alpha/2 & 0\end{bmatrix} and II is a 2×2 unit matrix, then (IA)[cosαsinαsinαcosα]=I+kA.(I-A)\begin{bmatrix}\cos \alpha & -\sin \alpha\\\sin \alpha & \cos \alpha\end{bmatrix}=I+kA. The value of k is

A

-1

B

1

C

2

D

None of these

Answer

1

Explanation

Solution

Let t=tanα/2t = \tan \alpha/2. Then A=[0tt0]A = \begin{bmatrix} 0 & -t \\ t & 0 \end{bmatrix}. Also, cosα=1t21+t2\cos \alpha = \frac{1-t^2}{1+t^2} and sinα=2t1+t2\sin \alpha = \frac{2t}{1+t^2}.

Then

IA=[1tt1]I - A = \begin{bmatrix} 1 & t \\ -t & 1 \end{bmatrix}.

Also, let M=[cosαsinαsinαcosα]=[1t21+t22t1+t22t1+t21t21+t2]M = \begin{bmatrix} \cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} \frac{1-t^2}{1+t^2} & - \frac{2t}{1+t^2} \\ \frac{2t}{1+t^2} & \frac{1-t^2}{1+t^2} \end{bmatrix}.

Then (IA)M=[1tt1][1t21+t22t1+t22t1+t21t21+t2]=11+t2[1t2+2t22t+tt3t+t3+2t2t2+1t2]=11+t2[1+t2t(1+t2)t(1+t2)1+t2]=[1tt1](I-A)M = \begin{bmatrix} 1 & t \\ -t & 1 \end{bmatrix} \begin{bmatrix} \frac{1-t^2}{1+t^2} & - \frac{2t}{1+t^2} \\ \frac{2t}{1+t^2} & \frac{1-t^2}{1+t^2} \end{bmatrix} = \frac{1}{1+t^2} \begin{bmatrix} 1-t^2 + 2t^2 & -2t + t - t^3 \\ -t + t^3 + 2t & 2t^2 + 1 - t^2 \end{bmatrix} = \frac{1}{1+t^2} \begin{bmatrix} 1+t^2 & -t(1+t^2) \\ t(1+t^2) & 1+t^2 \end{bmatrix} = \begin{bmatrix} 1 & -t \\ t & 1 \end{bmatrix}.

Also, I+kA=[1001]+k[0tt0]=[1ktkt1]I + kA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + k \begin{bmatrix} 0 & -t \\ t & 0 \end{bmatrix} = \begin{bmatrix} 1 & -kt \\ kt & 1 \end{bmatrix}.

Therefore, [1tt1]=[1ktkt1]\begin{bmatrix} 1 & -t \\ t & 1 \end{bmatrix} = \begin{bmatrix} 1 & -kt \\ kt & 1 \end{bmatrix}, so k=1k=1.