Solveeit Logo

Question

Question: If $a^{b^c}=256$, then find the maximum possible value of $abc$, where $a, b$ and $c$ are positive i...

If abc=256a^{b^c}=256, then find the maximum possible value of abcabc, where a,ba, b and cc are positive integers.

A

12

B

16

C

32

D

256

Answer

32

Explanation

Solution

We are given abc=256a^{b^c}=256.

Since 256=28256=2^8, let a=2ka=2^k where kk is a positive integer.

Then (2k)bc=2kbc=28(2^k)^{b^c}=2^{k\cdot b^c}=2^8.

Thus, kbc=8k\cdot b^c=8.

The factor pairs for 8 are:

  • k=1k=1 and bc=8b^c=8
  • k=2k=2 and bc=4b^c=4
  • k=4k=4 and bc=2b^c=2
  • k=8k=8 and bc=1b^c=1.

Now, analyze each case for the value of abcabc. Note that a=2ka=2^k:

  1. For k=1k=1: a=2a=2 and bc=8b^c=8.

    Possible pairs for (b,c)(b,c):

    • b=8,c=1b=8, c=1 giving abc=281=16abc=2\cdot8\cdot1=16.
    • b=2,c=3b=2, c=3 giving abc=223=12abc=2\cdot2\cdot3=12.

    Maximum here: 16.

  2. For k=2k=2: a=4a=4 and bc=4b^c=4.

    Possible pairs:

    • b=4,c=1b=4, c=1 giving abc=441=16abc=4\cdot4\cdot1=16.
    • b=2,c=2b=2, c=2 giving abc=422=16abc=4\cdot2\cdot2=16.

    Maximum here: 16.

  3. For k=4k=4: a=16a=16 and bc=2b^c=2.

    Since bc=2b^c=2 only possibility is b=2,c=1b=2, c=1 yielding abc=1621=32abc=16\cdot2\cdot1=32.

  4. For k=8k=8: a=256a=256 and bc=1b^c=1.

    The only possibility is b=1b=1. Although 1c=11^c=1 for any cc, selecting larger cc would make abcabc arbitrarily large. However, given the multiple choice options (12, 16, 32, 256), we must consider the non‐trivial cases (b>1b>1).

Thus, among the non‐trivial solutions, the maximum possible value of abcabc is 3232.