Solveeit Logo

Question

Question: Given that for a,b,c,d ∈ R, if a sec (200°) - c tan(200°) = d and b sec(200°) + d tan(200°)=c, then ...

Given that for a,b,c,d ∈ R, if a sec (200°) - c tan(200°) = d and b sec(200°) + d tan(200°)=c, then find the value of (a2+b2+c2+d2bdac)\left(\frac{a^2 + b^2+c^2 + d^2}{bd - ac}\right) sin 20°.

Answer

2

Explanation

Solution

The problem requires us to evaluate an expression involving variables a, b, c, d, which are related by two given trigonometric equations.

Let the given equations be:

  1. asec(200)ctan(200)=da \sec (200^\circ) - c \tan(200^\circ) = d
  2. bsec(200)+dtan(200)=cb \sec(200^\circ) + d \tan(200^\circ) = c

Let x=200x = 200^\circ. The equations become:

  1. asecxctanx=da \sec x - c \tan x = d
  2. bsecx+dtanx=cb \sec x + d \tan x = c

Multiply both equations by cosx\cos x to simplify them:

  1. acsinx=dcosx    a=dcosx+csinxa - c \sin x = d \cos x \implies a = d \cos x + c \sin x (Equation A)
  2. b+dsinx=ccosx    b=ccosxdsinxb + d \sin x = c \cos x \implies b = c \cos x - d \sin x (Equation B)

Now, we need to evaluate the expression (a2+b2+c2+d2bdac)sin20\left(\frac{a^2 + b^2+c^2 + d^2}{bd - ac}\right) \sin 20^\circ.

First, let's calculate a2+b2a^2 + b^2: a2=(dcosx+csinx)2=d2cos2x+c2sin2x+2cdcosxsinxa^2 = (d \cos x + c \sin x)^2 = d^2 \cos^2 x + c^2 \sin^2 x + 2cd \cos x \sin x b2=(ccosxdsinx)2=c2cos2x+d2sin2x2cdcosxsinxb^2 = (c \cos x - d \sin x)^2 = c^2 \cos^2 x + d^2 \sin^2 x - 2cd \cos x \sin x

Adding a2a^2 and b2b^2: a2+b2=(d2cos2x+c2sin2x+2cdcosxsinx)+(c2cos2x+d2sin2x2cdcosxsinx)a^2 + b^2 = (d^2 \cos^2 x + c^2 \sin^2 x + 2cd \cos x \sin x) + (c^2 \cos^2 x + d^2 \sin^2 x - 2cd \cos x \sin x) a2+b2=d2(cos2x+sin2x)+c2(sin2x+cos2x)a^2 + b^2 = d^2 (\cos^2 x + \sin^2 x) + c^2 (\sin^2 x + \cos^2 x) Using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1: a2+b2=d2(1)+c2(1)=c2+d2a^2 + b^2 = d^2(1) + c^2(1) = c^2 + d^2.

Now, the numerator of the expression is a2+b2+c2+d2a^2 + b^2 + c^2 + d^2: Numerator =(c2+d2)+c2+d2=2(c2+d2)= (c^2 + d^2) + c^2 + d^2 = 2(c^2 + d^2).

Next, let's calculate the denominator bdacbd - ac: ac=(dcosx+csinx)c=cdcosx+c2sinxac = (d \cos x + c \sin x) c = cd \cos x + c^2 \sin x bd=(ccosxdsinx)d=cdcosxd2sinxbd = (c \cos x - d \sin x) d = cd \cos x - d^2 \sin x

Subtracting acac from bdbd: Denominator =bdac=(cdcosxd2sinx)(cdcosx+c2sinx)= bd - ac = (cd \cos x - d^2 \sin x) - (cd \cos x + c^2 \sin x) Denominator =cdcosxd2sinxcdcosxc2sinx= cd \cos x - d^2 \sin x - cd \cos x - c^2 \sin x Denominator =d2sinxc2sinx=(c2+d2)sinx= -d^2 \sin x - c^2 \sin x = -(c^2 + d^2) \sin x.

Now, substitute the expressions for the numerator and the denominator into the fraction: a2+b2+c2+d2bdac=2(c2+d2)(c2+d2)sinx\frac{a^2 + b^2 + c^2 + d^2}{bd - ac} = \frac{2(c^2 + d^2)}{-(c^2 + d^2) \sin x} For this expression to be defined, (c2+d2)sinx0-(c^2 + d^2) \sin x \neq 0. Since x=200x = 200^\circ, sin(200)=sin(180+20)=sin(20)0\sin(200^\circ) = \sin(180^\circ + 20^\circ) = -\sin(20^\circ) \neq 0. Thus, we must have c2+d20c^2 + d^2 \neq 0. Assuming c2+d20c^2 + d^2 \neq 0, we can cancel the term (c2+d2)(c^2 + d^2): a2+b2+c2+d2bdac=2sinx=2cosecx\frac{a^2 + b^2 + c^2 + d^2}{bd - ac} = \frac{2}{-\sin x} = -2 \operatorname{cosec} x

Now, substitute x=200x = 200^\circ: a2+b2+c2+d2bdac=2cosec(200)\frac{a^2 + b^2 + c^2 + d^2}{bd - ac} = -2 \operatorname{cosec}(200^\circ)

Finally, we need to find the value of (a2+b2+c2+d2bdac)sin20\left(\frac{a^2 + b^2+c^2 + d^2}{bd - ac}\right) \sin 20^\circ: Value =(2cosec(200))sin20= (-2 \operatorname{cosec}(200^\circ)) \sin 20^\circ We know that cosec(200)=1sin(200)\operatorname{cosec}(200^\circ) = \frac{1}{\sin(200^\circ)}. Value =21sin(200)sin20= -2 \frac{1}{\sin(200^\circ)} \sin 20^\circ

Recall the trigonometric identity for angles in the third quadrant: sin(180+θ)=sinθ\sin(180^\circ + \theta) = -\sin \theta. So, sin(200)=sin(180+20)=sin(20)\sin(200^\circ) = \sin(180^\circ + 20^\circ) = -\sin(20^\circ).

Substitute this into the expression: Value =21sin(20)sin20= -2 \frac{1}{-\sin(20^\circ)} \sin 20^\circ Value =2(1sin(20))sin20= -2 \left(-\frac{1}{\sin(20^\circ)}\right) \sin 20^\circ Value =2sin(20)sin(20)= 2 \frac{\sin(20^\circ)}{\sin(20^\circ)}

Since sin(20)0\sin(20^\circ) \neq 0, we can cancel sin(20)\sin(20^\circ): Value =2= 2.

The second part of the question "3 + cosx ∀ x ∈ R can not have any value between -2√2 and 2√2. What inference can you" appears to be a separate, incomplete statement and is not related to the first part of the problem. Therefore, only the first part is addressed.

The final answer is 2\boxed{2}.

Explanation of the solution:

  1. Rewrite the given equations using x=200x = 200^\circ and convert them from sec/tan to sin/cos by multiplying by cosx\cos x. This yields a=dcosx+csinxa = d \cos x + c \sin x and b=ccosxdsinxb = c \cos x - d \sin x.
  2. Calculate a2+b2a^2 + b^2 using the derived expressions for aa and bb. This simplifies to c2+d2c^2 + d^2.
  3. The numerator of the fraction becomes a2+b2+c2+d2=(c2+d2)+c2+d2=2(c2+d2)a^2 + b^2 + c^2 + d^2 = (c^2 + d^2) + c^2 + d^2 = 2(c^2 + d^2).
  4. Calculate the denominator bdacbd - ac using the expressions for a,b,c,da, b, c, d. This simplifies to (c2+d2)sinx-(c^2 + d^2) \sin x.
  5. Form the fraction a2+b2+c2+d2bdac=2(c2+d2)(c2+d2)sinx\frac{a^2 + b^2 + c^2 + d^2}{bd - ac} = \frac{2(c^2 + d^2)}{-(c^2 + d^2) \sin x}. Assuming c2+d20c^2+d^2 \neq 0, this simplifies to 2sinx=2cosecx\frac{2}{-\sin x} = -2 \operatorname{cosec} x.
  6. Substitute x=200x = 200^\circ into the simplified fraction: 2cosec(200)-2 \operatorname{cosec}(200^\circ).
  7. Multiply this result by sin20\sin 20^\circ: (2cosec(200))sin20(-2 \operatorname{cosec}(200^\circ)) \sin 20^\circ.
  8. Use the identity cosec(200)=1sin(200)\operatorname{cosec}(200^\circ) = \frac{1}{\sin(200^\circ)} and the reduction formula sin(200)=sin(180+20)=sin(20)\sin(200^\circ) = \sin(180^\circ + 20^\circ) = -\sin(20^\circ).
  9. The expression becomes 21sin(20)sin20=2-2 \frac{1}{-\sin(20^\circ)} \sin 20^\circ = 2.