Question
Question: Given that for a,b,c,d ∈ R, if a sec (200°) - c tan(200°) = d and b sec(200°) + d tan(200°)=c, then ...
Given that for a,b,c,d ∈ R, if a sec (200°) - c tan(200°) = d and b sec(200°) + d tan(200°)=c, then find the value of (bd−aca2+b2+c2+d2) sin 20°.

2
Solution
The problem requires us to evaluate an expression involving variables a, b, c, d, which are related by two given trigonometric equations.
Let the given equations be:
- asec(200∘)−ctan(200∘)=d
- bsec(200∘)+dtan(200∘)=c
Let x=200∘. The equations become:
- asecx−ctanx=d
- bsecx+dtanx=c
Multiply both equations by cosx to simplify them:
- a−csinx=dcosx⟹a=dcosx+csinx (Equation A)
- b+dsinx=ccosx⟹b=ccosx−dsinx (Equation B)
Now, we need to evaluate the expression (bd−aca2+b2+c2+d2)sin20∘.
First, let's calculate a2+b2: a2=(dcosx+csinx)2=d2cos2x+c2sin2x+2cdcosxsinx b2=(ccosx−dsinx)2=c2cos2x+d2sin2x−2cdcosxsinx
Adding a2 and b2: a2+b2=(d2cos2x+c2sin2x+2cdcosxsinx)+(c2cos2x+d2sin2x−2cdcosxsinx) a2+b2=d2(cos2x+sin2x)+c2(sin2x+cos2x) Using the identity sin2x+cos2x=1: a2+b2=d2(1)+c2(1)=c2+d2.
Now, the numerator of the expression is a2+b2+c2+d2: Numerator =(c2+d2)+c2+d2=2(c2+d2).
Next, let's calculate the denominator bd−ac: ac=(dcosx+csinx)c=cdcosx+c2sinx bd=(ccosx−dsinx)d=cdcosx−d2sinx
Subtracting ac from bd: Denominator =bd−ac=(cdcosx−d2sinx)−(cdcosx+c2sinx) Denominator =cdcosx−d2sinx−cdcosx−c2sinx Denominator =−d2sinx−c2sinx=−(c2+d2)sinx.
Now, substitute the expressions for the numerator and the denominator into the fraction: bd−aca2+b2+c2+d2=−(c2+d2)sinx2(c2+d2) For this expression to be defined, −(c2+d2)sinx=0. Since x=200∘, sin(200∘)=sin(180∘+20∘)=−sin(20∘)=0. Thus, we must have c2+d2=0. Assuming c2+d2=0, we can cancel the term (c2+d2): bd−aca2+b2+c2+d2=−sinx2=−2cosecx
Now, substitute x=200∘: bd−aca2+b2+c2+d2=−2cosec(200∘)
Finally, we need to find the value of (bd−aca2+b2+c2+d2)sin20∘: Value =(−2cosec(200∘))sin20∘ We know that cosec(200∘)=sin(200∘)1. Value =−2sin(200∘)1sin20∘
Recall the trigonometric identity for angles in the third quadrant: sin(180∘+θ)=−sinθ. So, sin(200∘)=sin(180∘+20∘)=−sin(20∘).
Substitute this into the expression: Value =−2−sin(20∘)1sin20∘ Value =−2(−sin(20∘)1)sin20∘ Value =2sin(20∘)sin(20∘)
Since sin(20∘)=0, we can cancel sin(20∘): Value =2.
The second part of the question "3 + cosx ∀ x ∈ R can not have any value between -2√2 and 2√2. What inference can you" appears to be a separate, incomplete statement and is not related to the first part of the problem. Therefore, only the first part is addressed.
The final answer is 2.
Explanation of the solution:
- Rewrite the given equations using x=200∘ and convert them from sec/tan to sin/cos by multiplying by cosx. This yields a=dcosx+csinx and b=ccosx−dsinx.
- Calculate a2+b2 using the derived expressions for a and b. This simplifies to c2+d2.
- The numerator of the fraction becomes a2+b2+c2+d2=(c2+d2)+c2+d2=2(c2+d2).
- Calculate the denominator bd−ac using the expressions for a,b,c,d. This simplifies to −(c2+d2)sinx.
- Form the fraction bd−aca2+b2+c2+d2=−(c2+d2)sinx2(c2+d2). Assuming c2+d2=0, this simplifies to −sinx2=−2cosecx.
- Substitute x=200∘ into the simplified fraction: −2cosec(200∘).
- Multiply this result by sin20∘: (−2cosec(200∘))sin20∘.
- Use the identity cosec(200∘)=sin(200∘)1 and the reduction formula sin(200∘)=sin(180∘+20∘)=−sin(20∘).
- The expression becomes −2−sin(20∘)1sin20∘=2.