Solveeit Logo

Question

Question: For a ∈ R (the set of all real numbers), a ≠ -1, $\lim_{n \to \infty} \frac{(1^a + 2^a + ... + n^a)}...

For a ∈ R (the set of all real numbers), a ≠ -1, limn(1a+2a+...+na)(n+1)a1[(na+1)+(na+2)+...+(na+n)]=160\lim_{n \to \infty} \frac{(1^a + 2^a + ... + n^a)}{(n+1)^{a-1}[(na+1)+(na+2)+...+(na+n)]} = \frac{1}{60}.

Then a =

A

5

B

7

C

152\frac{-15}{2}

D

172\frac{-17}{2}

Answer

7

Explanation

Solution

We are given:

limn1a+2a++na(n+1)a1[(na+1)+(na+2)++(na+n)]=160.\lim_{n\to\infty}\frac{1^a+2^a+\cdots+n^a}{(n+1)^{a-1}\Bigl[(na+1)+(na+2)+\cdots+(na+n)\Bigr]}=\frac{1}{60}.
  1. Numerator Evaluation:
    For large nn, using integral approximation:

    k=1nkana+1a+1(provided a>1).\sum_{k=1}^{n} k^a \sim \frac{n^{a+1}}{a+1} \quad \text{(provided } a > -1\text{)}.
  2. Denominator Evaluation:
    First, note that:

    j=1n(na+j)=nan+n(n+1)2n2(a+12).\sum_{j=1}^{n} (na + j) = na\cdot n + \frac{n(n+1)}{2} \sim n^2\left(a+\frac{1}{2}\right).

    Also, (n+1)a1na1(n+1)^{a-1} \sim n^{a-1}. Thus, the denominator behaves as:

    na1n2(a+12)=na+1(a+12).n^{a-1}\cdot n^2\left(a+\frac{1}{2}\right)= n^{a+1}\left(a+\frac{1}{2}\right).
  3. Taking the Limit:
    The na+1n^{a+1} factors cancel:

    limnna+1a+1na+1(a+12)=1(a+1)(a+12)=160.\lim_{n\to\infty}\frac{\frac{n^{a+1}}{a+1}}{n^{a+1}\left(a+\frac{1}{2}\right)} = \frac{1}{(a+1)\left(a+\frac{1}{2}\right)}=\frac{1}{60}.

    Therefore,

    (a+1)(a+12)=60.(a+1)\left(a+\frac{1}{2}\right)=60.
  4. Solve the Equation:
    Expand:

    a2+32a+12=60a2+32a1192=0.a^2+\frac{3}{2}a+\frac{1}{2}=60 \quad \Longrightarrow \quad a^2+\frac{3}{2}a-\frac{119}{2}=0.

    Multiply through by 2:

    2a2+3a119=0.2a^2+3a-119=0.

    Using the quadratic formula:

    a=3±3242(119)22=3±9+9524=3±9614.a=\frac{-3\pm\sqrt{3^2-4\cdot 2\cdot(-119)}}{2\cdot 2}=\frac{-3\pm\sqrt{9+952}}{4}=\frac{-3\pm\sqrt{961}}{4}.

    Since 961=31\sqrt{961}=31, the solutions are:

    a=3+314=284=7ora=3314=344=172.a=\frac{-3+31}{4}=\frac{28}{4}=7 \quad \text{or} \quad a=\frac{-3-31}{4}=\frac{-34}{4}=-\frac{17}{2}.
  5. Validity Check:
    The asymptotic approximation used (via an integral) is valid when a>1a>-1. Hence, the solution a=172a=-\frac{17}{2} is extraneous.

Thus, the valid answer is a=7a=7.