Question
Question: For a ∈ R (the set of all real numbers), a ≠ -1, $\lim_{n \to \infty} \frac{(1^a + 2^a + ... + n^a)}...
For a ∈ R (the set of all real numbers), a ≠ -1, limn→∞(n+1)a−1[(na+1)+(na+2)+...+(na+n)](1a+2a+...+na)=601.
Then a =

A
5
B
7
C
2−15
D
2−17
Answer
7
Explanation
Solution
We are given:
n→∞lim(n+1)a−1[(na+1)+(na+2)+⋯+(na+n)]1a+2a+⋯+na=601.-
Numerator Evaluation:
k=1∑nka∼a+1na+1(provided a>−1).
For large n, using integral approximation: -
Denominator Evaluation:
j=1∑n(na+j)=na⋅n+2n(n+1)∼n2(a+21).
First, note that:Also, (n+1)a−1∼na−1. Thus, the denominator behaves as:
na−1⋅n2(a+21)=na+1(a+21). -
Taking the Limit:
n→∞limna+1(a+21)a+1na+1=(a+1)(a+21)1=601.
The na+1 factors cancel:Therefore,
(a+1)(a+21)=60. -
Solve the Equation:
a2+23a+21=60⟹a2+23a−2119=0.
Expand:Multiply through by 2:
2a2+3a−119=0.Using the quadratic formula:
a=2⋅2−3±32−4⋅2⋅(−119)=4−3±9+952=4−3±961.Since 961=31, the solutions are:
a=4−3+31=428=7ora=4−3−31=4−34=−217. -
Validity Check:
The asymptotic approximation used (via an integral) is valid when a>−1. Hence, the solution a=−217 is extraneous.
Thus, the valid answer is a=7.