Solveeit Logo

Question

Question: The value of $F(x) = 6\cos x\sqrt{1+\tan^2x} + 2\sin x\sqrt{1+\cot^2x}$, Where $x \in (0, 2\pi) - ...

The value of

F(x)=6cosx1+tan2x+2sinx1+cot2xF(x) = 6\cos x\sqrt{1+\tan^2x} + 2\sin x\sqrt{1+\cot^2x},

Where x(0,2π){π,π2,3π2}x \in (0, 2\pi) - \{\pi, \frac{\pi}{2}, \frac{3\pi}{2}\} may be

A

4

B

-4

C

8

D

-8

Answer

All options are correct since F(x) can be 4, -4, 8, or -8 depending on the quadrant of x.

Explanation

Solution

The given function is F(x)=6cosx1+tan2x+2sinx1+cot2xF(x) = 6\cos x\sqrt{1+\tan^2x} + 2\sin x\sqrt{1+\cot^2x}.

We know the trigonometric identities: 1+tan2x=sec2x1+\tan^2x = \sec^2x 1+cot2x=csc2x1+\cot^2x = \csc^2x

Substituting these into the expression for F(x)F(x): F(x)=6cosxsec2x+2sinxcsc2xF(x) = 6\cos x\sqrt{\sec^2x} + 2\sin x\sqrt{\csc^2x}

Using the property A2=A\sqrt{A^2} = |A|, we get: F(x)=6cosxsecx+2sinxcscxF(x) = 6\cos x|\sec x| + 2\sin x|\csc x|

We know that secx=1cosx\sec x = \frac{1}{\cos x} and cscx=1sinx\csc x = \frac{1}{\sin x}. The domain given is x(0,2π){π,π2,3π2}x \in (0, 2\pi) - \{\pi, \frac{\pi}{2}, \frac{3\pi}{2}\}. This means cosx0\cos x \neq 0 and sinx0\sin x \neq 0.

We need to consider the signs of cosx\cos x and sinx\sin x in different quadrants to evaluate the absolute values.

Term 1: 6cosxsecx6\cos x|\sec x|

  • If cosx>0\cos x > 0 (i.e., xx is in Quadrant I or Quadrant IV), then secx>0\sec x > 0, so secx=secx|\sec x| = \sec x. In this case, 6cosxsecx=6cosx(1cosx)=66\cos x|\sec x| = 6\cos x\left(\frac{1}{\cos x}\right) = 6.
  • If cosx<0\cos x < 0 (i.e., xx is in Quadrant II or Quadrant III), then secx<0\sec x < 0, so secx=secx|\sec x| = -\sec x. In this case, 6cosxsecx=6cosx(1cosx)=66\cos x|\sec x| = 6\cos x\left(-\frac{1}{\cos x}\right) = -6.

Term 2: 2sinxcscx2\sin x|\csc x|

  • If sinx>0\sin x > 0 (i.e., xx is in Quadrant I or Quadrant II), then cscx>0\csc x > 0, so cscx=cscx|\csc x| = \csc x. In this case, 2sinxcscx=2sinx(1sinx)=22\sin x|\csc x| = 2\sin x\left(\frac{1}{\sin x}\right) = 2.
  • If sinx<0\sin x < 0 (i.e., xx is in Quadrant III or Quadrant IV), then cscx<0\csc x < 0, so cscx=cscx|\csc x| = -\csc x. In this case, 2sinxcscx=2sinx(1sinx)=22\sin x|\csc x| = 2\sin x\left(-\frac{1}{\sin x}\right) = -2.

Now, let's combine these possibilities based on the quadrant xx lies in:

  1. If x(0,π2)x \in (0, \frac{\pi}{2}) (Quadrant I): cosx>0\cos x > 0 and sinx>0\sin x > 0. F(x)=6+2=8F(x) = 6 + 2 = 8.

  2. If x(π2,π)x \in (\frac{\pi}{2}, \pi) (Quadrant II): cosx<0\cos x < 0 and sinx>0\sin x > 0. F(x)=6+2=4F(x) = -6 + 2 = -4.

  3. If x(π,3π2)x \in (\pi, \frac{3\pi}{2}) (Quadrant III): cosx<0\cos x < 0 and sinx<0\sin x < 0. F(x)=62=8F(x) = -6 - 2 = -8.

  4. If x(3π2,2π)x \in (\frac{3\pi}{2}, 2\pi) (Quadrant IV): cosx>0\cos x > 0 and sinx<0\sin x < 0. F(x)=62=4F(x) = 6 - 2 = 4.

Thus, the possible values of F(x)F(x) are 8,4,8,48, -4, -8, 4. All the given options (A) 4, (B) -4, (C) 8, and (D) -8 are possible values for F(x)F(x).