Solveeit Logo

Question

Question: The value of $\cos^{-1}(\frac{1}{2}) + \cos^{-1}(\frac{1}{2})$ is...

The value of cos1(12)+cos1(12)\cos^{-1}(\frac{1}{2}) + \cos^{-1}(\frac{1}{2}) is

A

0

B

π3\frac{\pi}{3}

C

π6\frac{\pi}{6}

D

π\pi

Answer

None of the given options (the correct value is 2π3\frac{2\pi}{3})

Explanation

Solution

We know that

cos1(12)=π3\cos^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}.

Thus,

cos1(12)+cos1(12)=π3+π3=2π3\cos^{-1}\left(\frac{1}{2}\right)+\cos^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}+\frac{\pi}{3}=\frac{2\pi}{3}.

None of the given options (0, π3\frac{\pi}{3}, π6\frac{\pi}{6}, π\pi) equals 2π3\frac{2\pi}{3}.