Solveeit Logo

Question

Question: The value of $\cos^{-1}(\frac{-1}{2}) + \cos^{-1}(\frac{1}{2})$ is...

The value of cos1(12)+cos1(12)\cos^{-1}(\frac{-1}{2}) + \cos^{-1}(\frac{1}{2}) is

A

0

B

π3\frac{\pi}{3}

C

π6\frac{\pi}{6}

D

π\pi

Answer

π\pi

Explanation

Solution

We know that:

cos1(12)=π3andcos1(12)=2π3(in [0,π]).\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \quad \text{and} \quad \cos^{-1}\left(\frac{-1}{2}\right) = \frac{2\pi}{3} \quad (\text{in } [0,\pi]).

Thus, the sum is:

2π3+π3=π.\frac{2\pi}{3} + \frac{\pi}{3} = \pi.