Solveeit Logo

Question

Question: The sum of the infinite series, $1^2 - \frac{2^2}{5} + \frac{3^2}{5^2} - \frac{4^2}{5^3} + \frac{5^2...

The sum of the infinite series, 12225+32524253+52546255+1^2 - \frac{2^2}{5} + \frac{3^2}{5^2} - \frac{4^2}{5^3} + \frac{5^2}{5^4} - \frac{6^2}{5^5} + \dots is :

A

12\frac{1}{2}

B

2524\frac{25}{24}

C

2554\frac{25}{54}

D

125252\frac{125}{252}

Answer

2554\frac{25}{54}

Explanation

Solution

The given infinite series is S=12225+32524253+52546255+S = 1^2 - \frac{2^2}{5} + \frac{3^2}{5^2} - \frac{4^2}{5^3} + \frac{5^2}{5^4} - \frac{6^2}{5^5} + \dots.

We can write the general term of the series as Tn=(1)n1n25n1T_n = (-1)^{n-1} \frac{n^2}{5^{n-1}}. So, the series can be expressed in summation notation as: S=n=1(1)n1n25n1=n=1n2(15)n1S = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{5^{n-1}} = \sum_{n=1}^{\infty} n^2 \left(-\frac{1}{5}\right)^{n-1}.

Let x=15x = -\frac{1}{5}. Since x=15=15<1|x| = \left|-\frac{1}{5}\right| = \frac{1}{5} < 1, the series converges. The series becomes S=n=1n2xn1S = \sum_{n=1}^{\infty} n^2 x^{n-1}.

We know the sum of the geometric series for x<1|x|<1: n=0xn=11x\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} Differentiating both sides with respect to xx: n=1nxn1=ddx(11x)=1(1x)2\sum_{n=1}^{\infty} n x^{n-1} = \frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2} Let this sum be S1=1(1x)2S_1 = \frac{1}{(1-x)^2}. Now, multiply both sides by xx: n=1nxn=x(1x)2\sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2} Let this sum be S2=x(1x)2S_2 = \frac{x}{(1-x)^2}. Differentiating both sides of S2S_2 with respect to xx again: n=1n2xn1=ddx(x(1x)2)\sum_{n=1}^{\infty} n^2 x^{n-1} = \frac{d}{dx}\left(\frac{x}{(1-x)^2}\right) Using the quotient rule ddx(uv)=uvuvv2\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}, where u=xu=x and v=(1x)2v=(1-x)^2: u=ddx(x)=1u' = \frac{d}{dx}(x) = 1 v=ddx((1x)2)=2(1x)(1)=2(1x)v' = \frac{d}{dx}((1-x)^2) = 2(1-x)(-1) = -2(1-x) So, n=1n2xn1=1(1x)2x(2(1x))((1x)2)2\sum_{n=1}^{\infty} n^2 x^{n-1} = \frac{1 \cdot (1-x)^2 - x \cdot (-2(1-x))}{\left((1-x)^2\right)^2} =(1x)2+2x(1x)(1x)4= \frac{(1-x)^2 + 2x(1-x)}{(1-x)^4} Factor out (1x)(1-x) from the numerator: =(1x)((1x)+2x)(1x)4= \frac{(1-x)( (1-x) + 2x )}{(1-x)^4} =(1x)(1+x)(1x)4= \frac{(1-x)(1+x)}{(1-x)^4} =1+x(1x)3= \frac{1+x}{(1-x)^3} Now, substitute x=15x = -\frac{1}{5} into this formula: S=1+(15)(1(15))3S = \frac{1 + \left(-\frac{1}{5}\right)}{\left(1 - \left(-\frac{1}{5}\right)\right)^3} S=115(1+15)3S = \frac{1 - \frac{1}{5}}{\left(1 + \frac{1}{5}\right)^3} S=515(5+15)3S = \frac{\frac{5-1}{5}}{\left(\frac{5+1}{5}\right)^3} S=45(65)3S = \frac{\frac{4}{5}}{\left(\frac{6}{5}\right)^3} S=456353S = \frac{\frac{4}{5}}{\frac{6^3}{5^3}} S=455363S = \frac{4}{5} \cdot \frac{5^3}{6^3} S=45263S = \frac{4 \cdot 5^2}{6^3} S=425216S = \frac{4 \cdot 25}{216} To simplify the fraction, divide the numerator and denominator by their greatest common divisor, which is 4: S=100÷4216÷4=2554S = \frac{100 \div 4}{216 \div 4} = \frac{25}{54}

The final answer is 2554\frac{25}{54}.

Explanation of the solution:

  1. Identify the series form: The given series 12225+32524253+1^2 - \frac{2^2}{5} + \frac{3^2}{5^2} - \frac{4^2}{5^3} + \dots is an infinite series of the form n=1n2xn1\sum_{n=1}^{\infty} n^2 x^{n-1}, where x=15x = -\frac{1}{5}.
  2. Recall/Derive power series sum: Start with the geometric series sum n=0xn=11x\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.
  3. Differentiate twice:
    • Differentiate once with respect to xx: n=1nxn1=1(1x)2\sum_{n=1}^{\infty} n x^{n-1} = \frac{1}{(1-x)^2}.
    • Multiply by xx: n=1nxn=x(1x)2\sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2}.
    • Differentiate again with respect to xx: n=1n2xn1=ddx(x(1x)2)\sum_{n=1}^{\infty} n^2 x^{n-1} = \frac{d}{dx}\left(\frac{x}{(1-x)^2}\right).
  4. Apply quotient rule: Using the quotient rule, the derivative simplifies to (1x)(1+x)(1x)4=1+x(1x)3\frac{(1-x)(1+x)}{(1-x)^4} = \frac{1+x}{(1-x)^3}.
  5. Substitute value of x: Substitute x=15x = -\frac{1}{5} into the derived formula: S=1+(15)(1(15))3=4/5(6/5)3=4/5216/125S = \frac{1 + (-\frac{1}{5})}{(1 - (-\frac{1}{5}))^3} = \frac{4/5}{(6/5)^3} = \frac{4/5}{216/125}.
  6. Calculate and simplify: S=45×125216=4×25216=100216=2554S = \frac{4}{5} \times \frac{125}{216} = \frac{4 \times 25}{216} = \frac{100}{216} = \frac{25}{54}.