Solveeit Logo

Question

Question: 40 ml M 20 KMnO4 Sol + 50 ml KI solution in presence of h2so4 and the mixture diluted to 300 ml. 25 ...

40 ml M 20 KMnO4 Sol + 50 ml KI solution in presence of h2so4 and the mixture diluted to 300 ml. 25 ml mixture needs 5 ml of s M/50 K2 Cr2 07 Soln for titration Molarity of KI solution used is ?

Answer

0.344 M

Explanation

Solution

  1. First Reaction: KMnO4KMnO_4 reacts with KIKI in acidic medium. The balanced equation is: 2MnO4+10I+16H+2Mn2++5I2+8H2O2MnO_4^- + 10I^- + 16H^+ \rightarrow 2Mn^{2+} + 5I_2 + 8H_2O The stoichiometry shows that 1 mole of KMnO4KMnO_4 reacts with 5 moles of KIKI.

  2. Calculate moles of KMnO4KMnO_4: Molarity of KMnO4=M20=0.05KMnO_4 = \frac{M}{20} = 0.05 M. Volume of KMnO4=40KMnO_4 = 40 ml =0.040= 0.040 L. Moles of KMnO4=Molarity×Volume=0.05 M×0.040 L=0.002KMnO_4 = \text{Molarity} \times \text{Volume} = 0.05 \text{ M} \times 0.040 \text{ L} = 0.002 moles.

  3. Calculate moles of KIKI reacted: Moles of KIKI reacted =5×= 5 \times Moles of KMnO4=5×0.002 moles=0.010KMnO_4 = 5 \times 0.002 \text{ moles} = 0.010 moles.

  4. Excess KIKI: The subsequent titration implies that KIKI was in excess. Let MKIM_{KI} be the molarity of the initial KIKI solution. Volume of KIKI solution =50= 50 ml =0.050= 0.050 L. Initial moles of KI=MKI×0.050KI = M_{KI} \times 0.050 L. Moles of KIKI remaining (excess) =(MKI×0.050)0.010= (M_{KI} \times 0.050) - 0.010 moles.

  5. Excess KIKI in the titrated portion: The mixture is diluted to 300 ml. A 25 ml portion is taken for titration. Moles of excess KIKI in 25 ml =[(MKI×0.050)0.010]×25 ml300 ml= [(M_{KI} \times 0.050) - 0.010] \times \frac{25 \text{ ml}}{300 \text{ ml}}.

  6. Second Reaction: The excess KIKI is titrated by K2Cr2O7K_2Cr_2O_7 in acidic medium. The balanced equation is: Cr2O72+6I+14H+2Cr3++3I2+7H2OCr_2O_7^{2-} + 6I^- + 14H^+ \rightarrow 2Cr^{3+} + 3I_2 + 7H_2O The stoichiometry shows that 1 mole of K2Cr2O7K_2Cr_2O_7 reacts with 6 moles of KIKI.

  7. Calculate moles of K2Cr2O7K_2Cr_2O_7 used: Molarity of K2Cr2O7=M50=0.02K_2Cr_2O_7 = \frac{M}{50} = 0.02 M. Volume of K2Cr2O7=5K_2Cr_2O_7 = 5 ml =0.005= 0.005 L. Moles of K2Cr2O7=0.02 M×0.005 L=0.0001K_2Cr_2O_7 = 0.02 \text{ M} \times 0.005 \text{ L} = 0.0001 moles.

  8. Calculate moles of excess KIKI that reacted: Moles of excess KIKI reacted with K2Cr2O7=6×K_2Cr_2O_7 = 6 \times Moles of K2Cr2O7=6×0.0001 moles=0.0006K_2Cr_2O_7 = 6 \times 0.0001 \text{ moles} = 0.0006 moles. This is the amount of excess KIKI present in the 25 ml mixture.

  9. Equate and solve for MKIM_{KI}: From step 5 and step 8: [(MKI×0.050)0.010]×25300=0.0006[(M_{KI} \times 0.050) - 0.010] \times \frac{25}{300} = 0.0006 (MKI×0.050)0.010=0.0006×30025(M_{KI} \times 0.050) - 0.010 = 0.0006 \times \frac{300}{25} (MKI×0.050)0.010=0.0006×12(M_{KI} \times 0.050) - 0.010 = 0.0006 \times 12 (MKI×0.050)0.010=0.0072(M_{KI} \times 0.050) - 0.010 = 0.0072 MKI×0.050=0.010+0.0072M_{KI} \times 0.050 = 0.010 + 0.0072 MKI×0.050=0.0172M_{KI} \times 0.050 = 0.0172 MKI=0.01720.050=0.344M_{KI} = \frac{0.0172}{0.050} = 0.344 M.