Question
Question: If $\sin \theta = 3\sin (\theta + 2\alpha)$ and $\tan (\theta + \alpha) = K. \tan \alpha$, then K =...
If sinθ=3sin(θ+2α) and tan(θ+α)=K.tanα, then K =

-2
-1
2
3
-2
Solution
The problem asks us to find the value of K given the relation sinθ=3sin(θ+2α) and tan(θ+α)=K.tanα.
Given the equation: sinθ=3sin(θ+2α)
Rearrange the equation to form a ratio: sin(θ+2α)sinθ=13
Apply the Componendo-Dividendo rule, which states that if ba=dc, then a−ba+b=c−dc+d. sinθ−sin(θ+2α)sinθ+sin(θ+2α)=3−13+1 sinθ−sin(θ+2α)sinθ+sin(θ+2α)=24 sinθ−sin(θ+2α)sinθ+sin(θ+2α)=2
Now, use the sum-to-product and difference-to-product trigonometric identities: sinA+sinB=2sin(2A+B)cos(2A−B) sinA−sinB=2cos(2A+B)sin(2A−B)
Let A=θ and B=θ+2α. Then, 2A+B=2θ+(θ+2α)=22θ+2α=θ+α. And, 2A−B=2θ−(θ+2α)=2−2α=−α.
Substitute these into the equation: 2cos(θ+α)sin(−α)2sin(θ+α)cos(−α)=2
Since cos(−α)=cos(α) and sin(−α)=−sin(α): −2cos(θ+α)sin(α)2sin(θ+α)cos(α)=2
Simplify the expression: −cos(θ+α)sin(θ+α)⋅sin(α)cos(α)=2 −tan(θ+α)⋅cot(α)=2
Recall that cot(α)=tan(α)1: −tan(θ+α)⋅tan(α)1=2 tan(θ+α)=−2tan(α)
We are given that tan(θ+α)=K.tanα. Comparing this with our derived equation, tan(θ+α)=−2tan(α), we find that K=−2.