Solveeit Logo

Question

Question: If $\sin \theta = 3\sin (\theta + 2\alpha)$ and $\tan (\theta + \alpha) = K. \tan \alpha$, then K =...

If sinθ=3sin(θ+2α)\sin \theta = 3\sin (\theta + 2\alpha) and tan(θ+α)=K.tanα\tan (\theta + \alpha) = K. \tan \alpha, then K =

A

-2

B

-1

C

2

D

3

Answer

-2

Explanation

Solution

The problem asks us to find the value of KK given the relation sinθ=3sin(θ+2α)\sin \theta = 3\sin (\theta + 2\alpha) and tan(θ+α)=K.tanα\tan (\theta + \alpha) = K. \tan \alpha.

Given the equation: sinθ=3sin(θ+2α)\sin \theta = 3\sin (\theta + 2\alpha)

Rearrange the equation to form a ratio: sinθsin(θ+2α)=31\frac{\sin \theta}{\sin (\theta + 2\alpha)} = \frac{3}{1}

Apply the Componendo-Dividendo rule, which states that if ab=cd\frac{a}{b} = \frac{c}{d}, then a+bab=c+dcd\frac{a+b}{a-b} = \frac{c+d}{c-d}. sinθ+sin(θ+2α)sinθsin(θ+2α)=3+131\frac{\sin \theta + \sin (\theta + 2\alpha)}{\sin \theta - \sin (\theta + 2\alpha)} = \frac{3+1}{3-1} sinθ+sin(θ+2α)sinθsin(θ+2α)=42\frac{\sin \theta + \sin (\theta + 2\alpha)}{\sin \theta - \sin (\theta + 2\alpha)} = \frac{4}{2} sinθ+sin(θ+2α)sinθsin(θ+2α)=2\frac{\sin \theta + \sin (\theta + 2\alpha)}{\sin \theta - \sin (\theta + 2\alpha)} = 2

Now, use the sum-to-product and difference-to-product trigonometric identities: sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)

Let A=θA = \theta and B=θ+2αB = \theta + 2\alpha. Then, A+B2=θ+(θ+2α)2=2θ+2α2=θ+α\frac{A+B}{2} = \frac{\theta + (\theta + 2\alpha)}{2} = \frac{2\theta + 2\alpha}{2} = \theta + \alpha. And, AB2=θ(θ+2α)2=2α2=α\frac{A-B}{2} = \frac{\theta - (\theta + 2\alpha)}{2} = \frac{-2\alpha}{2} = -\alpha.

Substitute these into the equation: 2sin(θ+α)cos(α)2cos(θ+α)sin(α)=2\frac{2\sin(\theta + \alpha)\cos(-\alpha)}{2\cos(\theta + \alpha)\sin(-\alpha)} = 2

Since cos(α)=cos(α)\cos(-\alpha) = \cos(\alpha) and sin(α)=sin(α)\sin(-\alpha) = -\sin(\alpha): 2sin(θ+α)cos(α)2cos(θ+α)sin(α)=2\frac{2\sin(\theta + \alpha)\cos(\alpha)}{-2\cos(\theta + \alpha)\sin(\alpha)} = 2

Simplify the expression: sin(θ+α)cos(θ+α)cos(α)sin(α)=2-\frac{\sin(\theta + \alpha)}{\cos(\theta + \alpha)} \cdot \frac{\cos(\alpha)}{\sin(\alpha)} = 2 tan(θ+α)cot(α)=2-\tan(\theta + \alpha) \cdot \cot(\alpha) = 2

Recall that cot(α)=1tan(α)\cot(\alpha) = \frac{1}{\tan(\alpha)}: tan(θ+α)1tan(α)=2-\tan(\theta + \alpha) \cdot \frac{1}{\tan(\alpha)} = 2 tan(θ+α)=2tan(α)\tan(\theta + \alpha) = -2\tan(\alpha)

We are given that tan(θ+α)=K.tanα\tan (\theta + \alpha) = K. \tan \alpha. Comparing this with our derived equation, tan(θ+α)=2tan(α)\tan(\theta + \alpha) = -2\tan(\alpha), we find that K=2K = -2.