Question
Question: If $\int \frac{dx}{(x^2 + x + 1)^2} = a \tan^{-1} (\frac{2x+1}{\sqrt{3}}) + b (\frac{2x+1}{x^2+x+1})...
If ∫(x2+x+1)2dx=atan−1(32x+1)+b(x2+x+12x+1)+C,x>0 where C is the constant of integration, then the value of 9(3a+b) is equal to

15
Solution
The given integral is ∫(x2+x+1)2dx.
We can rewrite the denominator by completing the square: x2+x+1=(x+21)2+(23)2. Let x+21=t. Then dx=dt. The integral becomes I=∫(t2+(23)2)2dt. This is of the form ∫(t2+p2)2dt where p=23.
We use the reduction formula for In=∫(x2+p2)ndx: In=2p2(n−1)(x2+p2)n−1x+2p2(n−1)2n−3In−1. For our case, n=2 and p2=43. I2=2(43)(2−1)(t2+43)2−1t+2(43)(2−1)2(2)−3I1 I2=23(t2+43)t+231I1 I2=3(t2+43)2t+32I1.
Now, we need to evaluate I1=∫t2+43dt. This is a standard integral form ∫x2+a2dx=a1tan−1(ax). Here, a=23. I1=231tan−1(23t)=32tan−1(32t).
Substitute I1 back into the expression for I2: I2=3(t2+43)2t+32(32tan−1(32t))+C I2=3(t2+43)2t+334tan−1(32t)+C.
Now, substitute back t=x+21=22x+1. So 2t=2x+1. And t2+43=(x+21)2+43=x2+x+41+43=x2+x+1. Also, 334=3⋅343=943.
Substituting these back into I2: I=3(x2+x+1)2(2x+1)/2+943tan−1(32x+1)+C I=3(x2+x+1)2x+1+943tan−1(32x+1)+C.
Comparing this with the given form: ∫(x2+x+1)2dx=atan−1(32x+1)+b(x2+x+12x+1)+C We identify the coefficients: a=943 b=31.
We need to find the value of 9(3a+b). 9(3a+b)=9(3⋅943+31) =9(94⋅3+31) =9(912+31) =9(34+31) =9(35) =3⋅5=15.
The calculated value is 15, which matches the value given in the question.