Solveeit Logo

Question

Question: If $\int \frac{dx}{(x^2 + x + 1)^2} = a \tan^{-1} (\frac{2x+1}{\sqrt{3}}) + b (\frac{2x+1}{x^2+x+1})...

If dx(x2+x+1)2=atan1(2x+13)+b(2x+1x2+x+1)+C,x>0\int \frac{dx}{(x^2 + x + 1)^2} = a \tan^{-1} (\frac{2x+1}{\sqrt{3}}) + b (\frac{2x+1}{x^2+x+1}) + C, x > 0 where C is the constant of integration, then the value of 9(3a+b)9(\sqrt{3}a + b) is equal to

Answer

15

Explanation

Solution

The given integral is dx(x2+x+1)2\int \frac{dx}{(x^2 + x + 1)^2}.

We can rewrite the denominator by completing the square: x2+x+1=(x+12)2+(32)2x^2 + x + 1 = (x + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2. Let x+12=tx + \frac{1}{2} = t. Then dx=dtdx = dt. The integral becomes I=dt(t2+(32)2)2I = \int \frac{dt}{(t^2 + (\frac{\sqrt{3}}{2})^2)^2}. This is of the form dt(t2+p2)2\int \frac{dt}{(t^2 + p^2)^2} where p=32p = \frac{\sqrt{3}}{2}.

We use the reduction formula for In=dx(x2+p2)nI_n = \int \frac{dx}{(x^2+p^2)^n}: In=x2p2(n1)(x2+p2)n1+2n32p2(n1)In1I_n = \frac{x}{2p^2(n-1)(x^2+p^2)^{n-1}} + \frac{2n-3}{2p^2(n-1)} I_{n-1}. For our case, n=2n=2 and p2=34p^2 = \frac{3}{4}. I2=t2(34)(21)(t2+34)21+2(2)32(34)(21)I1I_2 = \frac{t}{2(\frac{3}{4})(2-1)(t^2+\frac{3}{4})^{2-1}} + \frac{2(2)-3}{2(\frac{3}{4})(2-1)} I_1 I2=t32(t2+34)+132I1I_2 = \frac{t}{\frac{3}{2}(t^2+\frac{3}{4})} + \frac{1}{\frac{3}{2}} I_1 I2=2t3(t2+34)+23I1I_2 = \frac{2t}{3(t^2+\frac{3}{4})} + \frac{2}{3} I_1.

Now, we need to evaluate I1=dtt2+34I_1 = \int \frac{dt}{t^2 + \frac{3}{4}}. This is a standard integral form dxx2+a2=1atan1(xa)\int \frac{dx}{x^2+a^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a}). Here, a=32a = \frac{\sqrt{3}}{2}. I1=132tan1(t32)=23tan1(2t3)I_1 = \frac{1}{\frac{\sqrt{3}}{2}} \tan^{-1} \left(\frac{t}{\frac{\sqrt{3}}{2}}\right) = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2t}{\sqrt{3}}\right).

Substitute I1I_1 back into the expression for I2I_2: I2=2t3(t2+34)+23(23tan1(2t3))+CI_2 = \frac{2t}{3(t^2+\frac{3}{4})} + \frac{2}{3} \left( \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2t}{\sqrt{3}}\right) \right) + C I2=2t3(t2+34)+433tan1(2t3)+CI_2 = \frac{2t}{3(t^2+\frac{3}{4})} + \frac{4}{3\sqrt{3}} \tan^{-1} \left(\frac{2t}{\sqrt{3}}\right) + C.

Now, substitute back t=x+12=2x+12t = x + \frac{1}{2} = \frac{2x+1}{2}. So 2t=2x+12t = 2x+1. And t2+34=(x+12)2+34=x2+x+14+34=x2+x+1t^2+\frac{3}{4} = (x+\frac{1}{2})^2 + \frac{3}{4} = x^2+x+\frac{1}{4}+\frac{3}{4} = x^2+x+1. Also, 433=4333=439\frac{4}{3\sqrt{3}} = \frac{4\sqrt{3}}{3 \cdot 3} = \frac{4\sqrt{3}}{9}.

Substituting these back into I2I_2: I=2(2x+1)/23(x2+x+1)+439tan1(2x+13)+CI = \frac{2(2x+1)/2}{3(x^2+x+1)} + \frac{4\sqrt{3}}{9} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}}\right) + C I=2x+13(x2+x+1)+439tan1(2x+13)+CI = \frac{2x+1}{3(x^2+x+1)} + \frac{4\sqrt{3}}{9} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}}\right) + C.

Comparing this with the given form: dx(x2+x+1)2=atan1(2x+13)+b(2x+1x2+x+1)+C\int \frac{dx}{(x^2 + x + 1)^2} = a \tan^{-1} (\frac{2x+1}{\sqrt{3}}) + b (\frac{2x+1}{x^2+x+1}) + C We identify the coefficients: a=439a = \frac{4\sqrt{3}}{9} b=13b = \frac{1}{3}.

We need to find the value of 9(3a+b)9(\sqrt{3}a + b). 9(3a+b)=9(3439+13)9(\sqrt{3}a + b) = 9 \left( \sqrt{3} \cdot \frac{4\sqrt{3}}{9} + \frac{1}{3} \right) =9(439+13)= 9 \left( \frac{4 \cdot 3}{9} + \frac{1}{3} \right) =9(129+13)= 9 \left( \frac{12}{9} + \frac{1}{3} \right) =9(43+13)= 9 \left( \frac{4}{3} + \frac{1}{3} \right) =9(53)= 9 \left( \frac{5}{3} \right) =35=15= 3 \cdot 5 = 15.

The calculated value is 15, which matches the value given in the question.