Solveeit Logo

Question

Question: $\forall$ x $\in$ R find the range of the function, f(x) = cos x (sin x + $\sqrt{sin^2 x + sin^2 \al...

\forall x \in R find the range of the function, f(x) = cos x (sin x + sin2x+sin2α\sqrt{sin^2 x + sin^2 \alpha}); α\alpha \in [0,π\pi]

Answer

The range of f(x) is [1+sin2α,1+sin2α][-\sqrt{1+\sin^2 \alpha}, \sqrt{1+\sin^2 \alpha}]

Explanation

Solution

Let the given function be f(x)=cosx(sinx+sin2x+sin2α)f(x) = \cos x (\sin x + \sqrt{\sin^2 x + \sin^2 \alpha}). Let k=sinαk = \sin \alpha. Since α[0,π]\alpha \in [0, \pi], k[0,1]k \in [0, 1].

Case 1: k=0k = 0 (i.e., sinα=0\sin \alpha = 0) In this case, f(x)=cosx(sinx+sin2x)=cosx(sinx+sinx)f(x) = \cos x (\sin x + \sqrt{\sin^2 x}) = \cos x (\sin x + |\sin x|).

  • If sinx0\sin x \ge 0, then f(x)=cosx(2sinx)=sin(2x)f(x) = \cos x (2 \sin x) = \sin(2x). The range of sin(2x)\sin(2x) is [1,1][-1, 1].
  • If sinx<0\sin x < 0, then f(x)=cosx(sinxsinx)=0f(x) = \cos x (\sin x - \sin x) = 0. Combining these, the range of f(x)f(x) when sinα=0\sin \alpha = 0 is [1,1][-1, 1].

Case 2: k>0k > 0 (i.e., sinα(0,1]\sin \alpha \in (0, 1]) Let u=sinxu = \sin x and v=cosxv = \cos x. The function is f(x)=v(u+u2+k2)f(x) = v(u + \sqrt{u^2 + k^2}). Consider the term g(u)=u+u2+k2g(u) = u + \sqrt{u^2 + k^2}. For any real uu, u2+k2>u2=u\sqrt{u^2+k^2} > \sqrt{u^2} = |u|.

  • If u0u \ge 0, g(u)=u+u2+k2>u+u=2u0g(u) = u + \sqrt{u^2+k^2} > u+u = 2u \ge 0.
  • If u<0u < 0, g(u)=u+u2+k2=u+u2+k2g(u) = u + \sqrt{u^2+k^2} = -|u| + \sqrt{u^2+k^2}. Since u2+k2>u\sqrt{u^2+k^2} > |u|, g(u)>0g(u) > 0. Thus, g(u)>0g(u) > 0 for all uRu \in \mathbb{R}. This implies that the sign of f(x)f(x) is determined by the sign of cosx\cos x. Since cosx\cos x can be positive, negative, or zero, f(x)f(x) can take positive, negative, or zero values. Due to the symmetry of sinx\sin x and cosx\cos x over 2π2\pi period, the range will be symmetric about 0, i.e., of the form [M,M][-M, M] where M=maxf(x)M = \max |f(x)|.

To find MM, we find the maximum value of f2(x)f^2(x): f2(x)=cos2x(sinx+sin2x+k2)2f^2(x) = \cos^2 x (\sin x + \sqrt{\sin^2 x + k^2})^2. Let sinx=ksinht\sin x = k \sinh t. This substitution is valid for all sinx[1,1]\sin x \in [-1, 1] as long as k(0,1]k \in (0, 1]. Then sin2x+k2=k2sinh2t+k2=ksinh2t+1=kcosht\sqrt{\sin^2 x + k^2} = \sqrt{k^2 \sinh^2 t + k^2} = k \sqrt{\sinh^2 t + 1} = k \cosh t (since k>0k>0 and cosht>0\cosh t > 0). So, sinx+sin2x+k2=ksinht+kcosht=k(sinht+cosht)=ket\sin x + \sqrt{\sin^2 x + k^2} = k \sinh t + k \cosh t = k(\sinh t + \cosh t) = k e^t. Now, f(x)=cosxketf(x) = \cos x \cdot k e^t. We have cos2x=1sin2x=1k2sinh2t\cos^2 x = 1 - \sin^2 x = 1 - k^2 \sinh^2 t. So, f2(x)=(1k2sinh2t)(ket)2=k2e2t(1k2sinh2t)f^2(x) = (1 - k^2 \sinh^2 t) (k e^t)^2 = k^2 e^{2t} (1 - k^2 \sinh^2 t). Substitute sinht=etet2\sinh t = \frac{e^t - e^{-t}}{2}: f2(x)=k2e2t(1k2(etet2)2)f^2(x) = k^2 e^{2t} \left(1 - k^2 \left(\frac{e^t - e^{-t}}{2}\right)^2\right) f2(x)=k2e2t(1k2e2t+e2t24)f^2(x) = k^2 e^{2t} \left(1 - k^2 \frac{e^{2t} + e^{-2t} - 2}{4}\right) f2(x)=k24(4e2tk2(e4t+12e2t))f^2(x) = \frac{k^2}{4} \left(4e^{2t} - k^2 (e^{4t} + 1 - 2e^{2t})\right) f2(x)=k24(k2e4t+(4+2k2)e2tk2)f^2(x) = \frac{k^2}{4} \left(-k^2 e^{4t} + (4+2k^2)e^{2t} - k^2\right). Let z=e2tz = e^{2t}. Since sinx=ksinht[1,1]\sin x = k \sinh t \in [-1, 1], we have sinht[1/k,1/k]\sinh t \in [-1/k, 1/k]. This implies t[arsinh(1/k),arsinh(1/k)]t \in [\text{arsinh}(-1/k), \text{arsinh}(1/k)]. Let t0=arsinh(1/k)t_0 = \text{arsinh}(1/k). So t[t0,t0]t \in [-t_0, t_0]. Thus z=e2t[e2t0,e2t0]z = e^{2t} \in [e^{-2t_0}, e^{2t_0}]. Consider the quadratic function h(z)=k2z2+(4+2k2)zk2h(z) = -k^2 z^2 + (4+2k^2)z - k^2. This is a downward-opening parabola. The maximum of h(z)h(z) occurs at z=4+2k22(k2)=4+2k22k2=2+k2k2=1+2k2z = -\frac{4+2k^2}{2(-k^2)} = \frac{4+2k^2}{2k^2} = \frac{2+k^2}{k^2} = 1 + \frac{2}{k^2}. The maximum value of h(z)h(z) is h(1+2k2)=k2(1+2k2)2+(4+2k2)(1+2k2)k2h\left(1 + \frac{2}{k^2}\right) = -k^2\left(1 + \frac{2}{k^2}\right)^2 + (4+2k^2)\left(1 + \frac{2}{k^2}\right) - k^2 =k2(k2+2k2)2+2(2+k2)(k2+2k2)k2= -k^2\left(\frac{k^2+2}{k^2}\right)^2 + 2(2+k^2)\left(\frac{k^2+2}{k^2}\right) - k^2 =(k2+2)2k2+2(k2+2)2k2k2= -\frac{(k^2+2)^2}{k^2} + \frac{2(k^2+2)^2}{k^2} - k^2 =(k2+2)2k2k2=k4+4k2+4k4k2=4k2+4k2=4(1+1k2)= \frac{(k^2+2)^2}{k^2} - k^2 = \frac{k^4+4k^2+4-k^4}{k^2} = \frac{4k^2+4}{k^2} = 4\left(1+\frac{1}{k^2}\right). Now, we need to check if z=1+2k2z = 1 + \frac{2}{k^2} is within the domain [e2t0,e2t0][e^{-2t_0}, e^{2t_0}]. e2t0=e2arsinh(1/k)=e2ln(1k+1k2+1)=(1+1+k2k)2=1+1+k2+21+k2k2=2+k2+21+k2k2e^{2t_0} = e^{2 \text{arsinh}(1/k)} = e^{2 \ln(\frac{1}{k} + \sqrt{\frac{1}{k^2}+1})} = \left(\frac{1+\sqrt{1+k^2}}{k}\right)^2 = \frac{1+1+k^2+2\sqrt{1+k^2}}{k^2} = \frac{2+k^2+2\sqrt{1+k^2}}{k^2}. Since k>0k>0, 21+k2>02\sqrt{1+k^2} > 0. Thus, 2+k2+21+k2k2>2+k2k2=1+2k2\frac{2+k^2+2\sqrt{1+k^2}}{k^2} > \frac{2+k^2}{k^2} = 1 + \frac{2}{k^2}. So, the maximum of h(z)h(z) occurs within the valid range of zz. The maximum value of f2(x)f^2(x) is k244(1+1k2)=k2(1+1k2)=k2+1\frac{k^2}{4} \cdot 4\left(1+\frac{1}{k^2}\right) = k^2\left(1+\frac{1}{k^2}\right) = k^2+1. Therefore, the maximum value of f(x)|f(x)| is k2+1=1+sin2α\sqrt{k^2+1} = \sqrt{1+\sin^2 \alpha}. Since f(x)f(x) is continuous and can take positive, negative, and zero values, its range is [1+sin2α,1+sin2α][-\sqrt{1+\sin^2 \alpha}, \sqrt{1+\sin^2 \alpha}]. This result also covers Case 1, as for sinα=0\sin \alpha = 0, the range becomes [1+0,1+0]=[1,1][-\sqrt{1+0}, \sqrt{1+0}] = [-1, 1].

Therefore, the range of the function is [1+sin2α,1+sin2α][-\sqrt{1+\sin^2 \alpha}, \sqrt{1+\sin^2 \alpha}].