Solveeit Logo

Question

Question: $z_1, z_2,........z_9$ are roots of the equation $z^9 + \alpha z^8 + \alpha^2z^7 +........+ \alpha^...

z1,z2,........z9z_1, z_2,........z_9 are roots of the equation z9+αz8+α2z7+........+α8z+α9=0z^9 + \alpha z^8 + \alpha^2z^7 +........+ \alpha^8z + \alpha^9 = 0 (zCz \in C, αR+\alpha \in R^+), then

A

r=037i=19zir=2\sum_{r=0}^{37}\sum_{i=1}^{9} z_i^r = 2 for α=1\alpha = 1

B

β1,β2&β3{z1,z2,.....z9}\beta_1, \beta_2 \& \beta_3 \in \{z_1, z_2, ..... z_9\} are vertices of a triangle such that Arg(βiβj)±π5i,j{1,2,3}Arg \left(\frac{\beta_i}{\beta_j}\right) \neq \pm \frac{\pi}{5} \forall i, j \in \{1,2,3\} number of such triangles are 30.

Answer

(A) r=037i=19zir=2\sum_{r=0}^{37}\sum_{i=1}^{9} z_i^r = 2 for α=1\alpha = 1

Explanation

Solution

The roots of the equation z9+αz8+α2z7++α8z+α9=0z^9 + \alpha z^8 + \alpha^2z^7 + \dots + \alpha^8z + \alpha^9 = 0 can be found by multiplying the equation by (zα)(z-\alpha). This gives (zα)(z9+αz8++α9)=z10α10(z-\alpha)(z^9 + \alpha z^8 + \dots + \alpha^9) = z^{10} - \alpha^{10}. So the equation is equivalent to z10α10zα=0\frac{z^{10} - \alpha^{10}}{z-\alpha} = 0. The roots are the solutions to z10α10=0z^{10} - \alpha^{10} = 0 except for z=αz=\alpha. The solutions to z10=α10z^{10} = \alpha^{10} are z=αei2kπ10=αeikπ5z = \alpha e^{i \frac{2k\pi}{10}} = \alpha e^{i \frac{k\pi}{5}} for k=0,1,,9k = 0, 1, \dots, 9. The root z=αz=\alpha corresponds to k=0k=0. Thus, the roots of the given equation are zk=αeikπ5z_k = \alpha e^{i \frac{k\pi}{5}} for k=1,2,,9k = 1, 2, \dots, 9.

Option (A): r=037i=19zir=2\sum_{r=0}^{37}\sum_{i=1}^{9} z_i^r = 2 for α=1\alpha = 1.

If α=1\alpha = 1, the roots are zk=eikπ5z_k = e^{i \frac{k\pi}{5}} for k=1,2,,9k = 1, 2, \dots, 9. Let ζ=eiπ/5\zeta = e^{i \pi/5}. The roots are ζ1,ζ2,,ζ9\zeta^1, \zeta^2, \dots, \zeta^9. For any root ziz_i, we have zi10=(eikπ/5)10=ei2kπ=1z_i^{10} = (e^{i k\pi/5})^{10} = e^{i 2k\pi} = 1 for k{1,,9}k \in \{1, \dots, 9\}. The inner sum is r=037zir\sum_{r=0}^{37} z_i^r. This is a geometric series with first term 1, common ratio ziz_i, and 38 terms. Since zi1z_i \neq 1 (as k{1,,9}k \in \{1, \dots, 9\}), the sum is 1zi381zi\frac{1 - z_i^{38}}{1 - z_i}. Since zi10=1z_i^{10} = 1, zi38=zi3×10+8=(zi10)3zi8=13zi8=zi8z_i^{38} = z_i^{3 \times 10 + 8} = (z_i^{10})^3 z_i^8 = 1^3 z_i^8 = z_i^8. So, r=037zir=1zi81zi=1+zi+zi2++zi7\sum_{r=0}^{37} z_i^r = \frac{1 - z_i^8}{1 - z_i} = 1 + z_i + z_i^2 + \dots + z_i^7. We need to compute i=19(1+zi++zi7)\sum_{i=1}^{9} (1 + z_i + \dots + z_i^7). Let zi=ζkiz_i = \zeta^{k_i} where kik_i are distinct values from {1,2,,9}\{1, 2, \dots, 9\}. The sum is k=19(1+ζk+ζ2k++ζ7k)\sum_{k=1}^{9} (1 + \zeta^k + \zeta^{2k} + \dots + \zeta^{7k}). This can be written as k=191+k=19ζk+k=19ζ2k++k=19ζ7k\sum_{k=1}^{9} 1 + \sum_{k=1}^{9} \zeta^k + \sum_{k=1}^{9} \zeta^{2k} + \dots + \sum_{k=1}^{9} \zeta^{7k}. The first term is k=191=9\sum_{k=1}^{9} 1 = 9. For m{1,2,,7}m \in \{1, 2, \dots, 7\}, consider the sum k=19ζmk=k=19(ζm)k\sum_{k=1}^{9} \zeta^{mk} = \sum_{k=1}^{9} (\zeta^m)^k. Since m{1,2,,7}m \in \{1, 2, \dots, 7\}, ζm=eimπ/51\zeta^m = e^{i m\pi/5} \neq 1 because m/5m/5 is not an integer multiple of 2. The sum of the 10th roots of unity is 1+ζm+ζ2m++ζ9m=k=09(ζm)k=1(ζm)101ζm=1(ζ10)m1ζm=11m1ζm=01 + \zeta^m + \zeta^{2m} + \dots + \zeta^{9m} = \sum_{k=0}^{9} (\zeta^m)^k = \frac{1 - (\zeta^m)^{10}}{1 - \zeta^m} = \frac{1 - (\zeta^{10})^m}{1 - \zeta^m} = \frac{1 - 1^m}{1 - \zeta^m} = 0. So, k=19(ζm)k=(k=09(ζm)k)(ζm)0=01=1\sum_{k=1}^{9} (\zeta^m)^k = (\sum_{k=0}^{9} (\zeta^m)^k) - (\zeta^m)^0 = 0 - 1 = -1. This holds for m=1,2,,7m = 1, 2, \dots, 7. The total sum is 9+m=17(1)=9+7×(1)=97=29 + \sum_{m=1}^{7} (-1) = 9 + 7 \times (-1) = 9 - 7 = 2. So, option (A) is correct.

Option (B): β1,β2,β3{z1,z2,,z9}\beta_1, \beta_2, \beta_3 \in \{z_1, z_2, \dots, z_9\} are vertices of a triangle such that Arg(βiβj)±π5Arg \left(\frac{\beta_i}{\beta_j}\right) \neq \pm \frac{\pi}{5} for all i,j{1,2,3}i, j \in \{1,2,3\} with iji \neq j. Number of such triangles are 30.

Let βi=zki=αeikiπ/5\beta_i = z_{k_i} = \alpha e^{i k_i\pi/5} and βj=zkj=αeikjπ/5\beta_j = z_{k_j} = \alpha e^{i k_j\pi/5}, where ki,kj{1,2,,9}k_i, k_j \in \{1, 2, \dots, 9\} are distinct. Arg(βiβj)=Arg(αeikiπ/5αeikjπ/5)=Arg(ei(kikj)π/5)=(kikj)π5(mod2π)Arg \left(\frac{\beta_i}{\beta_j}\right) = Arg \left(\frac{\alpha e^{i k_i\pi/5}}{\alpha e^{i k_j\pi/5}}\right) = Arg \left(e^{i (k_i-k_j)\pi/5}\right) = (k_i-k_j)\frac{\pi}{5} \pmod{2\pi}. The condition is (kikj)π5(mod2π)±π5(k_i-k_j)\frac{\pi}{5} \pmod{2\pi} \neq \pm \frac{\pi}{5}. This means (kikj)/5(mod2)±1/5(k_i-k_j)/5 \pmod{2} \neq \pm 1/5. (kikj)/5±1/5+2n(k_i-k_j)/5 \neq \pm 1/5 + 2n for any integer nn. kikj±1+10nk_i-k_j \neq \pm 1 + 10n. Since ki,kj{1,2,,9}k_i, k_j \in \{1, 2, \dots, 9\} are distinct, kikjk_i - k_j is an integer from 8-8 to 88, excluding 0. The condition kikj±1+10nk_i - k_j \neq \pm 1 + 10n for nZn \in Z. If n=0n=0, the condition is kikj±1k_i - k_j \neq \pm 1. If n0n \neq 0, 10n10|10n| \ge 10. Since kikj8|k_i - k_j| \le 8, kikjk_i - k_j cannot be equal to ±1+10n\pm 1 + 10n for n0n \neq 0. So the condition simplifies to kikj1|k_i - k_j| \neq 1 for any distinct pair i,j{1,2,3}i, j \in \{1, 2, 3\}. This means that the indices k1,k2,k3k_1, k_2, k_3 chosen from {1,2,,9}\{1, 2, \dots, 9\} must be such that no two indices are consecutive integers.

We need to choose 3 distinct indices k1<k2<k3k_1 < k_2 < k_3 from the set S={1,2,,9}S = \{1, 2, \dots, 9\} such that k2k1>1k_2 - k_1 > 1 and k3k2>1k_3 - k_2 > 1. Let x1=k1x_1 = k_1, x2=k2k1x_2 = k_2 - k_1, x3=k3k2x_3 = k_3 - k_2, x4=9k3x_4 = 9 - k_3. We have k11k_1 \ge 1, k2>k1+1k_2 > k_1+1, k3>k2+1k_3 > k_2+1. x11x_1 \ge 1. x2=k2k12x_2 = k_2 - k_1 \ge 2. x3=k3k22x_3 = k_3 - k_2 \ge 2. x4=9k39(9)=0x_4 = 9 - k_3 \ge 9 - (9) = 0. (It's possible that k3=9k_3=9) x1+x2+x3+x4=k1+(k2k1)+(k3k2)+(9k3)=9x_1 + x_2 + x_3 + x_4 = k_1 + (k_2 - k_1) + (k_3 - k_2) + (9 - k_3) = 9. Let y1=x110y_1 = x_1 - 1 \ge 0, y2=x220y_2 = x_2 - 2 \ge 0, y3=x320y_3 = x_3 - 2 \ge 0, y4=x40y_4 = x_4 \ge 0. (y1+1)+(y2+2)+(y3+2)+y4=9(y_1+1) + (y_2+2) + (y_3+2) + y_4 = 9. y1+y2+y3+y4=9122=4y_1 + y_2 + y_3 + y_4 = 9 - 1 - 2 - 2 = 4. We need to find the number of non-negative integer solutions to y1+y2+y3+y4=4y_1 + y_2 + y_3 + y_4 = 4. This is a stars and bars problem. The number of solutions is (n+k1k1)=(4+4141)=(73)\binom{n+k-1}{k-1} = \binom{4+4-1}{4-1} = \binom{7}{3}. (73)=7×6×53×2×1=35\binom{7}{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35.

This is the number of ways to choose 3 indices k1<k2<k3k_1 < k_2 < k_3 from {1,2,,9}\{1, 2, \dots, 9\} such that no two are consecutive. Each set of 3 indices corresponds to a unique triangle. The number of such triangles is 35. Option (B) states the number of such triangles is 30, which is incorrect.