Solveeit Logo

Question

Question: The value of $\csc^2 \frac{2\pi}{7} + \csc^2 \frac{2\pi}{7} + \csc^2 \frac{4\pi}{7}$ is equal to 8...

The value of csc22π7+csc22π7+csc24π7\csc^2 \frac{2\pi}{7} + \csc^2 \frac{2\pi}{7} + \csc^2 \frac{4\pi}{7} is equal to 8

Answer

False

Explanation

Solution

The question asks to verify if the statement "The value of csc22π7+csc22π7+csc24π7\csc^2 \frac{2\pi}{7} + \csc^2 \frac{2\pi}{7} + \csc^2 \frac{4\pi}{7} is equal to 8" is true or false. The expression can be simplified as 2csc22π7+csc24π72 \csc^2 \frac{2\pi}{7} + \csc^2 \frac{4\pi}{7}.

We use the identity csc2x=1+cot2x\csc^2 x = 1 + \cot^2 x. So, the expression becomes: 2csc22π7+csc24π7=2(1+cot22π7)+(1+cot24π7)2 \csc^2 \frac{2\pi}{7} + \csc^2 \frac{4\pi}{7} = 2 \left(1 + \cot^2 \frac{2\pi}{7}\right) + \left(1 + \cot^2 \frac{4\pi}{7}\right) =2+2cot22π7+1+cot24π7= 2 + 2 \cot^2 \frac{2\pi}{7} + 1 + \cot^2 \frac{4\pi}{7} =3+2cot22π7+cot24π7= 3 + 2 \cot^2 \frac{2\pi}{7} + \cot^2 \frac{4\pi}{7}

We know that cot(πx)=cotx\cot(\pi - x) = -\cot x, which implies cot2(πx)=cot2x\cot^2(\pi - x) = \cot^2 x. Therefore, cot24π7=cot2(π3π7)=cot23π7\cot^2 \frac{4\pi}{7} = \cot^2 \left(\pi - \frac{3\pi}{7}\right) = \cot^2 \frac{3\pi}{7}. Substituting this into the expression: 3+2cot22π7+cot23π73 + 2 \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7}

Now, we use a standard identity for the sum of squares of cotangents: For an odd integer nn, the sum of squares of cotangents is given by: k=1(n1)/2cot2kπn=(n1)(n2)6\sum_{k=1}^{(n-1)/2} \cot^2 \frac{k\pi}{n} = \frac{(n-1)(n-2)}{6} For n=7n=7, (n1)/2=(71)/2=3(n-1)/2 = (7-1)/2 = 3. So, for n=7n=7: cot2π7+cot22π7+cot23π7=(71)(72)6=6×56=5\cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = \frac{(7-1)(7-2)}{6} = \frac{6 \times 5}{6} = 5

Let the given expression be EE. We are checking if E=8E=8. So, we need to check if 3+2cot22π7+cot23π7=83 + 2 \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = 8. This implies 2cot22π7+cot23π7=52 \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = 5.

From the identity, we know that cot2π7+cot22π7+cot23π7=5\cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = 5. If the statement is true, then it must be that: 2cot22π7+cot23π7=cot2π7+cot22π7+cot23π72 \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = \cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} Subtracting cot22π7+cot23π7\cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} from both sides, we get: cot22π7=cot2π7\cot^2 \frac{2\pi}{7} = \cot^2 \frac{\pi}{7} This implies cot2π7=±cotπ7\cot \frac{2\pi}{7} = \pm \cot \frac{\pi}{7}. Since both π7\frac{\pi}{7} and 2π7\frac{2\pi}{7} lie in the interval (0,π/2)(0, \pi/2), their cotangent values are positive. Thus, we must have cot2π7=cotπ7\cot \frac{2\pi}{7} = \cot \frac{\pi}{7}. However, the cotangent function is strictly decreasing in the interval (0,π/2)(0, \pi/2). Since π7<2π7\frac{\pi}{7} < \frac{2\pi}{7}, it must be that cotπ7>cot2π7\cot \frac{\pi}{7} > \cot \frac{2\pi}{7}. Therefore, cot2π7cot22π7\cot^2 \frac{\pi}{7} \neq \cot^2 \frac{2\pi}{7}. This contradicts our assumption that the given statement is true.

Hence, the statement "The value of csc22π7+csc22π7+csc24π7\csc^2 \frac{2\pi}{7} + \csc^2 \frac{2\pi}{7} + \csc^2 \frac{4\pi}{7} is equal to 8" is false.

Note: If the question had been csc2π7+csc22π7+csc24π7\csc^2 \frac{\pi}{7} + \csc^2 \frac{2\pi}{7} + \csc^2 \frac{4\pi}{7}, then the value would be: (1+cot2π7)+(1+cot22π7)+(1+cot24π7)(1 + \cot^2 \frac{\pi}{7}) + (1 + \cot^2 \frac{2\pi}{7}) + (1 + \cot^2 \frac{4\pi}{7}) =3+cot2π7+cot22π7+cot23π7= 3 + \cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} =3+5=8= 3 + 5 = 8 This is a common identity, which suggests a possible typo in the original question. However, based on the question as stated, the value is not 8.