Question
Question: The series $\frac{1}{x+1} + \frac{2x}{(x+1)(x+2)} + \frac{3x^2}{(x+1)(x+2)(x+3)} + ......$ upto $n$ ...
The series x+11+(x+1)(x+2)2x+(x+1)(x+2)(x+3)3x2+...... upto n terms can be expressed as Sn=1−f(x,n), where f(x,n) is a relation in x and n. If f(x,n)=31 for n=2. The value of x can be: [α]

A
−23
B
1
C
2
D
−21
Answer
2 and −21
Explanation
Solution
Given the series
Sn=x+11+(x+1)(x+2)2x+(x+1)(x+2)(x+3)3x2+… (up to n terms)and we have
Sn=1−f(x,n).For n=2, it's given that f(x,2)=31. So,
S2=1−31=32.Now, the first two terms are:
T1=x+11,T2=(x+1)(x+2)2x.Thus,
S2=x+11+(x+1)(x+2)2x=32.Multiply both sides by (x+1)(x+2):
(x+2)+2x=32(x+1)(x+2).This simplifies to:
3x+2=32(x2+3x+2).Multiply both sides by 3:
9x+6=2x2+6x+4.Bring all terms to one side:
2x2+6x+4−9x−6=0⇒2x2−3x−2=0.Solving the quadratic:
x=2⋅23±(−3)2−4⋅2⋅(−2)=43±9+16=43±5.So,
x=48=2orx=4−2=−21.Thus, the possible values of x are 2 and −21.