Solveeit Logo

Question

Question: The series $\frac{1}{x+1} + \frac{2x}{(x+1)(x+2)} + \frac{3x^2}{(x+1)(x+2)(x+3)} + ......$ upto $n$ ...

The series 1x+1+2x(x+1)(x+2)+3x2(x+1)(x+2)(x+3)+......\frac{1}{x+1} + \frac{2x}{(x+1)(x+2)} + \frac{3x^2}{(x+1)(x+2)(x+3)} + ...... upto nn terms can be expressed as Sn=1f(x,n)S_n = 1 - f(x,n), where f(x,n)f(x,n) is a relation in xx and nn. If f(x,n)=13f(x,n) = \frac{1}{3} for n=2n = 2. The value of xx can be: [α][\alpha]

A

32-\frac{3}{2}

B

1

C

2

D

12-\frac{1}{2}

Answer

2 and 12-\frac{1}{2}

Explanation

Solution

Given the series

Sn=1x+1+2x(x+1)(x+2)+3x2(x+1)(x+2)(x+3)+ (up to n terms)S_n = \frac{1}{x+1} + \frac{2x}{(x+1)(x+2)} + \frac{3x^2}{(x+1)(x+2)(x+3)} + \ldots \text{ (up to $n$ terms)}

and we have

Sn=1f(x,n).S_n = 1 - f(x,n).

For n=2n=2, it's given that f(x,2)=13f(x,2)=\frac{1}{3}. So,

S2=113=23.S_2 = 1 - \frac{1}{3} = \frac{2}{3}.

Now, the first two terms are:

T1=1x+1,T2=2x(x+1)(x+2).T_1 = \frac{1}{x+1}, \quad T_2 = \frac{2x}{(x+1)(x+2)}.

Thus,

S2=1x+1+2x(x+1)(x+2)=23.S_2 = \frac{1}{x+1} + \frac{2x}{(x+1)(x+2)} = \frac{2}{3}.

Multiply both sides by (x+1)(x+2)(x+1)(x+2):

(x+2)+2x=23(x+1)(x+2).(x+2) + 2x = \frac{2}{3}(x+1)(x+2).

This simplifies to:

3x+2=23(x2+3x+2).3x + 2 = \frac{2}{3}(x^2 + 3x + 2).

Multiply both sides by 3:

9x+6=2x2+6x+4.9x + 6 = 2x^2 + 6x + 4.

Bring all terms to one side:

2x2+6x+49x6=02x23x2=0.2x^2 + 6x + 4 - 9x - 6 = 0 \quad \Rightarrow \quad 2x^2 - 3x - 2 = 0.

Solving the quadratic:

x=3±(3)242(2)22=3±9+164=3±54.x = \frac{3 \pm \sqrt{(-3)^2 - 4\cdot2\cdot(-2)}}{2\cdot2} = \frac{3 \pm \sqrt{9+16}}{4} = \frac{3 \pm 5}{4}.

So,

x=84=2orx=24=12.x = \frac{8}{4} = 2 \quad \text{or} \quad x = \frac{-2}{4} = -\frac{1}{2}.

Thus, the possible values of xx are 2 and 12-\frac{1}{2}.