Question
Question: If $2 \cosx + \sin x = 1$, then find the sum of all possible values of $7 \cosx + 6 \sin x$....
If 2\cosx+sinx=1, then find the sum of all possible values of 7\cosx+6sinx.

8
Solution
Let cosx=c and sinx=s.
We are given the equation: 2c+s=1
We need to find the sum of all possible values of E=7c+6s.
From the given equation, we can express s in terms of c: s=1−2c
Substitute this expression for s into the fundamental trigonometric identity c2+s2=1: c2+(1−2c)2=1 c2+(1−4c+4c2)=1 5c2−4c+1=1 5c2−4c=0 Factor out c: c(5c−4)=0
This equation gives two possible values for c:
Case 1: c=0 If cosx=0, then substitute this back into s=1−2c: s=1−2(0)=1 So, sinx=1. This pair (cosx,sinx)=(0,1) satisfies c2+s2=02+12=1. Now, calculate E for this case: E1=7c+6s=7(0)+6(1)=6.
Case 2: 5c−4=0⟹c=54 If cosx=54, then substitute this back into s=1−2c: s=1−2(54)=1−58=−53 So, sinx=−53. This pair (cosx,sinx)=(54,−53) satisfies c2+s2=(54)2+(−53)2=2516+259=2525=1. Now, calculate E for this case: E2=7c+6s=7(54)+6(−53)=528−518=510=2.
The possible values for 7cosx+6sinx are 6 and 2. The sum of all possible values is 6+2=8.
Therefore, the sum of all possible values is 8.