Solveeit Logo

Question

Question: If $2 \cosx + \sin x = 1$, then find the sum of all possible values of $7 \cosx + 6 \sin x$....

If 2\cosx+sinx=12 \cosx + \sin x = 1, then find the sum of all possible values of 7\cosx+6sinx7 \cosx + 6 \sin x.

Answer

8

Explanation

Solution

Let cosx=c\cos x = c and sinx=s\sin x = s.

We are given the equation: 2c+s=12c + s = 1

We need to find the sum of all possible values of E=7c+6sE = 7c + 6s.

From the given equation, we can express ss in terms of cc: s=12cs = 1 - 2c

Substitute this expression for ss into the fundamental trigonometric identity c2+s2=1c^2 + s^2 = 1: c2+(12c)2=1c^2 + (1 - 2c)^2 = 1 c2+(14c+4c2)=1c^2 + (1 - 4c + 4c^2) = 1 5c24c+1=15c^2 - 4c + 1 = 1 5c24c=05c^2 - 4c = 0 Factor out cc: c(5c4)=0c(5c - 4) = 0

This equation gives two possible values for cc:

Case 1: c=0c = 0 If cosx=0\cos x = 0, then substitute this back into s=12cs = 1 - 2c: s=12(0)=1s = 1 - 2(0) = 1 So, sinx=1\sin x = 1. This pair (cosx,sinx)=(0,1)(\cos x, \sin x) = (0, 1) satisfies c2+s2=02+12=1c^2 + s^2 = 0^2 + 1^2 = 1. Now, calculate EE for this case: E1=7c+6s=7(0)+6(1)=6E_1 = 7c + 6s = 7(0) + 6(1) = 6.

Case 2: 5c4=0    c=455c - 4 = 0 \implies c = \frac{4}{5} If cosx=45\cos x = \frac{4}{5}, then substitute this back into s=12cs = 1 - 2c: s=12(45)=185=35s = 1 - 2\left(\frac{4}{5}\right) = 1 - \frac{8}{5} = -\frac{3}{5} So, sinx=35\sin x = -\frac{3}{5}. This pair (cosx,sinx)=(45,35)(\cos x, \sin x) = \left(\frac{4}{5}, -\frac{3}{5}\right) satisfies c2+s2=(45)2+(35)2=1625+925=2525=1c^2 + s^2 = \left(\frac{4}{5}\right)^2 + \left(-\frac{3}{5}\right)^2 = \frac{16}{25} + \frac{9}{25} = \frac{25}{25} = 1. Now, calculate EE for this case: E2=7c+6s=7(45)+6(35)=285185=105=2E_2 = 7c + 6s = 7\left(\frac{4}{5}\right) + 6\left(-\frac{3}{5}\right) = \frac{28}{5} - \frac{18}{5} = \frac{10}{5} = 2.

The possible values for 7cosx+6sinx7 \cos x + 6 \sin x are 6 and 2. The sum of all possible values is 6+2=86 + 2 = 8.

Therefore, the sum of all possible values is 8.