Solveeit Logo

Question

Question: The normal at a variable point P on an ellipse E of eccentricity $e=\frac{2}{3}$ meets the axes of t...

The normal at a variable point P on an ellipse E of eccentricity e=23e=\frac{2}{3} meets the axes of the ellipse in Q and R then find the eccentric of locus of the mid-point of QR.

A

2/3

B

3/2

C

4/9

D

9/4

Answer

2/3

Explanation

Solution

Let the ellipse be x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. The eccentricity is e=23e = \frac{2}{3}. The equation of the normal at P(acosθ,bsinθ)P(a \cos \theta, b \sin \theta) is axcosθbysinθ=a2b2=a2e2\frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^2 - b^2 = a^2e^2.

The normal meets the x-axis at Q(ae2cosθ,0)Q(ae^2 \cos \theta, 0) and the y-axis at R(0,a2e2bsinθ)R(0, -\frac{a^2e^2}{b} \sin \theta).

Let M(X,Y)M(X, Y) be the midpoint of QR. X=ae22cosθ    cosθ=2Xae2X = \frac{ae^2}{2} \cos \theta \implies \cos \theta = \frac{2X}{ae^2} Y=a2e22bsinθ    sinθ=2bYa2e2Y = -\frac{a^2e^2}{2b} \sin \theta \implies \sin \theta = -\frac{2bY}{a^2e^2}

Using cos2θ+sin2θ=1\cos^2 \theta + \sin^2 \theta = 1: (2Xae2)2+(2bYa2e2)2=1(\frac{2X}{ae^2})^2 + (\frac{2bY}{a^2e^2})^2 = 1 4X2a2e4+4b2Y2a4e4=1\frac{4X^2}{a^2e^4} + \frac{4b^2Y^2}{a^4e^4} = 1 X2(a2e4/4)+Y2(a4e4/4b2)=1\frac{X^2}{(a^2e^4/4)} + \frac{Y^2}{(a^4e^4/4b^2)} = 1

Let the locus be X2A2+Y2B2=1\frac{X^2}{A^2} + \frac{Y^2}{B^2} = 1, where A2=a2e44A^2 = \frac{a^2e^4}{4} and B2=a4e44b2=a2e44(1e2)B^2 = \frac{a^4e^4}{4b^2} = \frac{a^2e^4}{4(1-e^2)}. Since e2=4/9e^2 = 4/9, 1e2=5/91-e^2 = 5/9. A2=a2(4/9)24=4a281A^2 = \frac{a^2(4/9)^2}{4} = \frac{4a^2}{81} B2=a2(4/9)24(5/9)=4a245B^2 = \frac{a^2(4/9)^2}{4(5/9)} = \frac{4a^2}{45}

Since B2>A2B^2 > A^2, the major axis is along the Y-axis. The eccentricity (e)2(e')^2 of the locus is 1A2B21 - \frac{A^2}{B^2}. (e)2=14a2/814a2/45=14581=159=49(e')^2 = 1 - \frac{4a^2/81}{4a^2/45} = 1 - \frac{45}{81} = 1 - \frac{5}{9} = \frac{4}{9}. e=49=23e' = \sqrt{\frac{4}{9}} = \frac{2}{3}.