Question
Question: The normal at a variable point P on an ellipse E of eccentricity $e=\frac{2}{3}$ meets the axes of t...
The normal at a variable point P on an ellipse E of eccentricity e=32 meets the axes of the ellipse in Q and R then find the eccentric of locus of the mid-point of QR.

2/3
3/2
4/9
9/4
2/3
Solution
Let the ellipse be a2x2+b2y2=1. The eccentricity is e=32. The equation of the normal at P(acosθ,bsinθ) is cosθax−sinθby=a2−b2=a2e2.
The normal meets the x-axis at Q(ae2cosθ,0) and the y-axis at R(0,−ba2e2sinθ).
Let M(X,Y) be the midpoint of QR. X=2ae2cosθ⟹cosθ=ae22X Y=−2ba2e2sinθ⟹sinθ=−a2e22bY
Using cos2θ+sin2θ=1: (ae22X)2+(a2e22bY)2=1 a2e44X2+a4e44b2Y2=1 (a2e4/4)X2+(a4e4/4b2)Y2=1
Let the locus be A2X2+B2Y2=1, where A2=4a2e4 and B2=4b2a4e4=4(1−e2)a2e4. Since e2=4/9, 1−e2=5/9. A2=4a2(4/9)2=814a2 B2=4(5/9)a2(4/9)2=454a2
Since B2>A2, the major axis is along the Y-axis. The eccentricity (e′)2 of the locus is 1−B2A2. (e′)2=1−4a2/454a2/81=1−8145=1−95=94. e′=94=32.
