Solveeit Logo

Question

Question: A remote sensing satellite of earth revolves in a circular orbit at a height of 0.25 × $10^6$ m abov...

A remote sensing satellite of earth revolves in a circular orbit at a height of 0.25 × 10610^6 m above thesurface of earth. Ifearth's radius is 6.38 × 10610^6 m, then the orbital speed of the satellite is

A

8.56 km s1s^{-1}

B

9.13 km s1s^{-1}

C

6.67 km s1s^{-1}

D

7.76 km s1s^{-1}

Answer

7.76 km s1s^{-1}

Explanation

Solution

The orbital speed vv of a satellite in a circular orbit is given by:

v=GMrv = \sqrt{\frac{GM}{r}}

where:

GG is the gravitational constant,

MM is the mass of the Earth (with GM3.986×1014m3/s2GM \approx 3.986 \times 10^{14} \, \text{m}^3/\text{s}^2), and

rr is the distance from the center of the Earth.

The satellite's altitude is given as 0.25×106m0.25 \times 10^6 \, \text{m} and the Earth's radius is 6.38×106m6.38 \times 10^6 \, \text{m}. Thus,

r=6.38×106+0.25×106=6.63×106m.r = 6.38 \times 10^6 + 0.25 \times 10^6 = 6.63 \times 10^6 \, \text{m}.

Now, plugging in the values:

v=3.986×10146.63×106.v = \sqrt{\frac{3.986 \times 10^{14}}{6.63 \times 10^6}}.

Calculating the inside term:

3.986×10146.63×1066.01×107m2/s2.\frac{3.986 \times 10^{14}}{6.63 \times 10^6} \approx 6.01 \times 10^7 \, \text{m}^2/\text{s}^2.

Taking the square root:

v6.01×1077.75×103m/s7.76km/s.v \approx \sqrt{6.01 \times 10^7} \approx 7.75 \times 10^3 \, \text{m/s} \approx 7.76 \, \text{km/s}.