Question
Mathematics Question on Inverse Trigonometric Functions
4tan−151−tan−1701+tan−1991 is equal to
A
π/6
B
π/4
C
π/3
D
π/2
Answer
π/4
Explanation
Solution
We have, 4tan−151−tan−1701+tan−1991 = 2\left\\{2\,tan^{-1} \frac{1}{5}\right\\} - \left\\{tan^{-1} \frac{1}{70} -tan^{-1} \frac{1}{99}\right\\} = 2\left\\{tan^{-1}\left(\frac{2\times1/5 }{1-\left(1/5\right)^{2}}\right)\right\\} -tan^{-1}\left\\{\frac{\frac{1}{70}-\frac{1}{99}}{1+\frac{1}{70}\times \frac{1}{99}}\right\\} = 2\,tan^{-1} \frac{5}{12}\left\\{tan^{-1}\left(\frac{29}{6931}\right)\right\\} = tan^{-1}\left\\{\frac{2\times 5/12 }{1-\left(5/12\right)^{2}}\right\\} - tan^{-1}\left(\frac{1}{239}\right) =tan−1119120−tan−12391 = tan^{-1} \left\\{\frac{\frac{120}{119} -\frac{1}{239} }{1+\frac{120}{119}\times\frac{1}{239}}\right\\} =tan−11=4π