Solveeit Logo

Question

Question: Solve for $x: \sin^{-1}\left(\sin\left(\frac{2x^2+4}{1+x^2}\right)\right)<\pi-3$...

Solve for x:sin1(sin(2x2+41+x2))<π3x: \sin^{-1}\left(\sin\left(\frac{2x^2+4}{1+x^2}\right)\right)<\pi-3

Answer

(-1, 1)

Explanation

Solution

Let y=2x2+41+x2y = \frac{2x^2+4}{1+x^2}. The range of yy is (2,4](2, 4]. For y(2,4]y \in (2, 4], sin1(sin(y))=πy\sin^{-1}(\sin(y)) = \pi-y. The inequality becomes πy<π3\pi-y < \pi-3, which simplifies to y>3y > 3. Thus, we need 3<y43 < y \le 4. Substituting back y=2x2+41+x2y = \frac{2x^2+4}{1+x^2}, we get 3<2x2+41+x243 < \frac{2x^2+4}{1+x^2} \le 4. The inequality 3<2x2+41+x23 < \frac{2x^2+4}{1+x^2} yields x2<1x^2 < 1, or 1<x<1-1 < x < 1. The inequality 2x2+41+x24\frac{2x^2+4}{1+x^2} \le 4 is true for all real xx. The intersection of these conditions is 1<x<1-1 < x < 1.