Solveeit Logo

Question

Question: P is an orthogonal matrix of order 3 and $\alpha, \beta, \gamma$ are direction angles of a straight ...

P is an orthogonal matrix of order 3 and α,β,γ\alpha, \beta, \gamma are direction angles of a straight line.

Let A=[sin2αsinαsinβsinαsinγsinαsinβsin2βsinβsinγsinαsinγsinβsinγsin2γ]A = \begin{bmatrix} \sin^2\alpha & \sin\alpha\sin\beta & \sin\alpha\sin\gamma \\ \sin\alpha\sin\beta & \sin^2\beta & \sin\beta\sin\gamma \\ \sin\alpha\sin\gamma & \sin\beta\sin\gamma & \sin^2\gamma \end{bmatrix} and Q=PTAPQ = P^TAP. If PQ6PT=2kAPQ^6P^T = 2^kA, then k=k =

A

5

B

7

C

6

D

0

Answer

5

Explanation

Solution

The problem asks us to find the value of kk given an orthogonal matrix PP, direction angles α,β,γ\alpha, \beta, \gamma, and matrices AA and QQ. The relationship to be satisfied is PQ6PT=2kAPQ^6P^T = 2^kA.

1. Simplify PQ6PTPQ^6P^T using the properties of orthogonal matrices:

Given Q=PTAPQ = P^TAP. We need to calculate QnQ^n. Let's find the first few powers of QQ:

Q2=(PTAP)(PTAP)=PTA(PPT)APQ^2 = (P^TAP)(P^TAP) = P^TA(PP^T)AP. Since PP is an orthogonal matrix, PPT=IPP^T = I (identity matrix). So, Q2=PTA(I)AP=PTA2PQ^2 = P^TA(I)AP = P^TA^2P.

Similarly, Q3=QQ2=(PTAP)(PTA2P)=PTA(PPT)A2P=PTA(I)A2P=PTA3PQ^3 = Q \cdot Q^2 = (P^TAP)(P^TA^2P) = P^TA(PP^T)A^2P = P^TA(I)A^2P = P^TA^3P.

By induction, we can generalize this to Qn=PTAnPQ^n = P^TA^nP. For n=6n=6, we have Q6=PTA6PQ^6 = P^TA^6P.

Now, substitute Q6Q^6 back into the expression PQ6PTPQ^6P^T:

PQ6PT=P(PTA6P)PTPQ^6P^T = P(P^TA^6P)P^T. Rearranging the terms: PQ6PT=(PPT)A6(PPT)PQ^6P^T = (PP^T)A^6(PP^T). Again, using PPT=IPP^T = I: PQ6PT=IA6I=A6PQ^6P^T = I A^6 I = A^6.

So, the given equation simplifies to A6=2kAA^6 = 2^kA.

2. Analyze matrix A and calculate its powers:

The matrix AA is given as: A=[sin2αsinαsinβsinαsinγsinαsinβsin2βsinβsinγsinαsinγsinβsinγsin2γ]A = \begin{bmatrix} \sin^2\alpha & \sin\alpha\sin\beta & \sin\alpha\sin\gamma \\ \sin\alpha\sin\beta & \sin^2\beta & \sin\beta\sin\gamma \\ \sin\alpha\sin\gamma & \sin\beta\sin\gamma & \sin^2\gamma \end{bmatrix}

This matrix can be expressed as an outer product of a vector XX with itself. Let X=[sinαsinβsinγ]X = \begin{bmatrix} \sin\alpha \\ \sin\beta \\ \sin\gamma \end{bmatrix}. Then A=XXTA = X X^T.

XXT=[sinαsinβsinγ][sinαsinβsinγ]=[sin2αsinαsinβsinαsinγsinβsinαsin2βsinβsinγsinγsinαsinγsinβsin2γ]X X^T = \begin{bmatrix} \sin\alpha \\ \sin\beta \\ \sin\gamma \end{bmatrix} \begin{bmatrix} \sin\alpha & \sin\beta & \sin\gamma \end{bmatrix} = \begin{bmatrix} \sin^2\alpha & \sin\alpha\sin\beta & \sin\alpha\sin\gamma \\ \sin\beta\sin\alpha & \sin^2\beta & \sin\beta\sin\gamma \\ \sin\gamma\sin\alpha & \sin\gamma\sin\beta & \sin^2\gamma \end{bmatrix}, which matches AA.

Now, let's calculate A2A^2: A2=(XXT)(XXT)=X(XTX)XTA^2 = (X X^T)(X X^T) = X (X^T X) X^T. We need to calculate the scalar product XTXX^T X:

XTX=[sinαsinβsinγ][sinαsinβsinγ]=sin2α+sin2β+sin2γX^T X = \begin{bmatrix} \sin\alpha & \sin\beta & \sin\gamma \end{bmatrix} \begin{bmatrix} \sin\alpha \\ \sin\beta \\ \sin\gamma \end{bmatrix} = \sin^2\alpha + \sin^2\beta + \sin^2\gamma.

We are given that α,β,γ\alpha, \beta, \gamma are direction angles of a straight line. This means their cosines are direction cosines, and they satisfy the relation: cos2α+cos2β+cos2γ=1\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1.

Now, substitute sin2θ=1cos2θ\sin^2\theta = 1 - \cos^2\theta into the expression for XTXX^T X:

XTX=(1cos2α)+(1cos2β)+(1cos2γ)X^T X = (1 - \cos^2\alpha) + (1 - \cos^2\beta) + (1 - \cos^2\gamma)

XTX=3(cos2α+cos2β+cos2γ)X^T X = 3 - (\cos^2\alpha + \cos^2\beta + \cos^2\gamma)

Using the direction angles property: XTX=31=2X^T X = 3 - 1 = 2.

Now substitute this value back into the expression for A2A^2: A2=X(2)XT=2(XXT)=2AA^2 = X (2) X^T = 2 (X X^T) = 2A.

3. Generalize AnA^n and find A6A^6:

We found A2=2AA^2 = 2A. Let's find higher powers:

A3=AA2=A(2A)=2A2=2(2A)=22AA^3 = A \cdot A^2 = A \cdot (2A) = 2A^2 = 2(2A) = 2^2A.

A4=AA3=A(22A)=22A2=22(2A)=23AA^4 = A \cdot A^3 = A \cdot (2^2A) = 2^2A^2 = 2^2(2A) = 2^3A.

Following this pattern, we can see that An=2n1AA^n = 2^{n-1}A.

For n=6n=6: A6=261A=25AA^6 = 2^{6-1}A = 2^5A.

4. Solve for k:

We have PQ6PT=A6PQ^6P^T = A^6 and A6=25AA^6 = 2^5A. The problem states PQ6PT=2kAPQ^6P^T = 2^kA. Therefore, 25A=2kA2^5A = 2^kA.

Since α,β,γ\alpha, \beta, \gamma are direction angles, it's impossible for all sinα,sinβ,sinγ\sin\alpha, \sin\beta, \sin\gamma to be zero (as that would imply cos2α=1,cos2β=1,cos2γ=1\cos^2\alpha = 1, \cos^2\beta = 1, \cos^2\gamma = 1, leading to 1+1+1=11+1+1=1, which is false). Thus, XX is not a zero vector, and AA is not a zero matrix.

Since A0A \ne 0, we can compare the coefficients of AA: 25=2k2^5 = 2^k. This implies k=5k=5.