Solveeit Logo

Question

Question: ${ }^{n}C_1 - (1+\frac{1}{2}){ }^{n}C_2 + (1+\frac{1}{2}+\frac{1}{3}){ }^{n}C_3 - (1+\frac{1}{2}+\fr...

nC1(1+12)nC2+(1+12+13)nC3(1+12+13+14)nC4+...+(1)n1(1+12+13+...+1n)nCn={ }^{n}C_1 - (1+\frac{1}{2}){ }^{n}C_2 + (1+\frac{1}{2}+\frac{1}{3}){ }^{n}C_3 - (1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}){ }^{n}C_4 + ... + (-1)^{n-1}(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}){ }^{n}C_n =

A

n1n\frac{n-1}{n}

B

1n\frac{1}{n}

C

1n+1\frac{1}{n+1}

D

2nn+1\frac{2^n}{n+1}

Answer

1n\frac{1}{n}

Explanation

Solution

We are given

S=k=1n(1)k1(1+12+13++1k)(nk).S=\sum_{k=1}^{n}(-1)^{k-1}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}\right)\binom{n}{k}.

Notice that the harmonic number Hk=j=1k1jH_k=\sum_{j=1}^{k}\frac{1}{j}. Thus,

S=k=1n(1)k1Hk(nk)=k=1n(1)k1(nk)(j=1k1j).S=\sum_{k=1}^{n}(-1)^{k-1}H_k\binom{n}{k}=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k}\left(\sum_{j=1}^{k}\frac{1}{j}\right).

Interchange the order of summation:

S=j=1n1jk=jn(1)k1(nk).S=\sum_{j=1}^{n}\frac{1}{j}\sum_{k=j}^{n}(-1)^{k-1}\binom{n}{k}.

Using the known binomial identity

k=jn(1)k1(nk)=(1)j1(n1j1),\sum_{k=j}^{n}(-1)^{k-1}\binom{n}{k}=(-1)^{j-1}\binom{n-1}{j-1},

we have

S=j=1n(1)j1j(n1j1).S=\sum_{j=1}^{n}\frac{(-1)^{j-1}}{j}\binom{n-1}{j-1}.

Let m=j1m=j-1 so that m=0m=0 to n1n-1. Then,

S=m=0n1(1)mm+1(n1m).S=\sum_{m=0}^{n-1}\frac{(-1)^m}{m+1}\binom{n-1}{m}.

It is known that

m=0N(1)mm+1(Nm)=1N+1,\sum_{m=0}^{N}\frac{(-1)^m}{m+1}\binom{N}{m}=\frac{1}{N+1},

where here N=n1N=n-1. Therefore,

S=1n.S=\frac{1}{n}.