Solveeit Logo

Question

Question: Evaluate $\int xe^{3x} dx$ using integration by parts....

Evaluate xe3xdx\int xe^{3x} dx using integration by parts.

A

xe3x+x9+Cxe^{3x} + \frac{x}{9} + C

B

xe3xx9+Cxe^{3x} - \frac{x}{9} + C

C

xe3x3+x9+C\frac{x e^{3x}}{3} + \frac{x}{9} + C

D

x3e3x9+C\frac{x}{3} - \frac{e^{3x}}{9} + C

Answer

xe3x3e3x9+C\frac{xe^{3x}}{3} - \frac{e^{3x}}{9} + C

Explanation

Solution

To evaluate the integral xe3xdx\int xe^{3x} dx, we use the integration by parts formula:

udv=uvvdu\int u dv = uv - \int v du

We need to choose uu and dvdv. Following the LIATE rule (Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential), we choose u=xu=x (Algebraic) and dv=e3xdxdv=e^{3x} dx (Exponential).

  1. Identify uu and dvdv: Let u=xu = x Let dv=e3xdxdv = e^{3x} dx

  2. Find dudu and vv: Differentiate uu to find dudu: du=ddx(x)dx=dxdu = \frac{d}{dx}(x) dx = dx

    Integrate dvdv to find vv: v=e3xdx=e3x3v = \int e^{3x} dx = \frac{e^{3x}}{3}

  3. Apply the integration by parts formula: Substitute uu, vv, and dudu into the formula udv=uvvdu\int u dv = uv - \int v du:

    xe3xdx=x(e3x3)(e3x3)dx\int xe^{3x} dx = x \left(\frac{e^{3x}}{3}\right) - \int \left(\frac{e^{3x}}{3}\right) dx xe3xdx=xe3x313e3xdx\int xe^{3x} dx = \frac{xe^{3x}}{3} - \frac{1}{3} \int e^{3x} dx
  4. Evaluate the remaining integral: The integral e3xdx\int e^{3x} dx is e3x3\frac{e^{3x}}{3}.

  5. Substitute back and add the constant of integration:

    xe3xdx=xe3x313(e3x3)+C\int xe^{3x} dx = \frac{xe^{3x}}{3} - \frac{1}{3} \left(\frac{e^{3x}}{3}\right) + C xe3xdx=xe3x3e3x9+C\int xe^{3x} dx = \frac{xe^{3x}}{3} - \frac{e^{3x}}{9} + C

Therefore, the correct answer is xe3x3e3x9+C\frac{xe^{3x}}{3} - \frac{e^{3x}}{9} + C.