Question
Question: Evaluate $\int xe^{3x} dx$ using integration by parts....
Evaluate ∫xe3xdx using integration by parts.

A
xe3x+9x+C
B
xe3x−9x+C
C
3xe3x+9x+C
D
3x−9e3x+C
Answer
3xe3x−9e3x+C
Explanation
Solution
To evaluate the integral ∫xe3xdx, we use the integration by parts formula:
∫udv=uv−∫vduWe need to choose u and dv. Following the LIATE rule (Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential), we choose u=x (Algebraic) and dv=e3xdx (Exponential).
-
Identify u and dv: Let u=x Let dv=e3xdx
-
Find du and v: Differentiate u to find du: du=dxd(x)dx=dx
Integrate dv to find v: v=∫e3xdx=3e3x
-
Apply the integration by parts formula: Substitute u, v, and du into the formula ∫udv=uv−∫vdu:
∫xe3xdx=x(3e3x)−∫(3e3x)dx ∫xe3xdx=3xe3x−31∫e3xdx -
Evaluate the remaining integral: The integral ∫e3xdx is 3e3x.
-
Substitute back and add the constant of integration:
∫xe3xdx=3xe3x−31(3e3x)+C ∫xe3xdx=3xe3x−9e3x+C
Therefore, the correct answer is 3xe3x−9e3x+C.