Solveeit Logo

Question

Question: Simplify: $\left|\begin{array}{cc}\log_{2}512 & \log_{4}3 \\ \log_{8} & \log_{4}9\end{array}\right| ...

Simplify: log2512log43log8log49×log33log23log4log24\left|\begin{array}{cc}\log_{2}512 & \log_{4}3 \\ \log_{8} & \log_{4}9\end{array}\right| \times \left|\begin{array}{cc}\log_{3}3 & \log_{2}3 \\ \log_{4} & \log_{2}4\end{array}\right|

Answer

The question is incomplete due to missing arguments in the logarithm terms (log8\log_8 and log4\log_4).

Explanation

Solution

The question as presented contains missing arguments for two logarithm terms: log8\log_{8} in the first determinant and log4\log_{4} in the second determinant. Without these arguments, the values of these terms cannot be determined, making the problem unsolvable.

Assuming this is a typo and the question intended to have complete entries, we analyze the most probable interpretations:

Interpretation 1: The missing arguments are 1 (i.e., logb1=0\log_b 1 = 0). In this case, log8\log_8 is interpreted as log81=0\log_8 1 = 0, and log4\log_4 is interpreted as log41=0\log_4 1 = 0.

Let's evaluate the known terms first:

  • log2512=log229=9\log_2 512 = \log_2 2^9 = 9
  • log43=log23log24=log232\log_4 3 = \frac{\log_2 3}{\log_2 4} = \frac{\log_2 3}{2}
  • log49=log432=2log43=2×log232=log23\log_4 9 = \log_4 3^2 = 2 \log_4 3 = 2 \times \frac{\log_2 3}{2} = \log_2 3
  • log33=1\log_3 3 = 1
  • log23\log_2 3 (remains as is)
  • log24=log222=2\log_2 4 = \log_2 2^2 = 2

Under Interpretation 1, the two determinants are: First determinant, D1D_1: D1=log2512log43log81log49=912log230log23D_1 = \left|\begin{array}{cc}\log_{2}512 & \log_{4}3 \\ \log_{8}1 & \log_{4}9\end{array}\right| = \left|\begin{array}{cc}9 & \frac{1}{2}\log_{2}3 \\ 0 & \log_{2}3\end{array}\right| Calculating D1D_1: D1=(9)(log23)(0)(12log23)=9log23D_1 = (9)(\log_2 3) - (0)\left(\frac{1}{2}\log_2 3\right) = 9 \log_2 3

Second determinant, D2D_2: D2=log33log23log41log24=1log2302D_2 = \left|\begin{array}{cc}\log_{3}3 & \log_{2}3 \\ \log_{4}1 & \log_{2}4\end{array}\right| = \left|\begin{array}{cc}1 & \log_{2}3 \\ 0 & 2\end{array}\right| Calculating D2D_2: D2=(1)(2)(0)(log23)=2D_2 = (1)(2) - (0)(\log_2 3) = 2

The product D1×D2=(9log23)×(2)=18log23D_1 \times D_2 = (9 \log_2 3) \times (2) = 18 \log_2 3.

Interpretation 2: The missing arguments are the base itself (i.e., logbb=1\log_b b = 1). In this case, log8\log_8 is interpreted as log88=1\log_8 8 = 1, and log4\log_4 is interpreted as log44=1\log_4 4 = 1.

Under Interpretation 2, the two determinants are: First determinant, D1D_1: D1=log2512log43log88log49=912log231log23D_1 = \left|\begin{array}{cc}\log_{2}512 & \log_{4}3 \\ \log_{8}8 & \log_{4}9\end{array}\right| = \left|\begin{array}{cc}9 & \frac{1}{2}\log_{2}3 \\ 1 & \log_{2}3\end{array}\right| Calculating D1D_1: D1=(9)(log23)(1)(12log23)=9log2312log23=(912)log23=172log23D_1 = (9)(\log_2 3) - (1)\left(\frac{1}{2}\log_2 3\right) = 9 \log_2 3 - \frac{1}{2}\log_2 3 = \left(9 - \frac{1}{2}\right)\log_2 3 = \frac{17}{2}\log_2 3

Second determinant, D2D_2: D2=log33log23log44log24=1log2312D_2 = \left|\begin{array}{cc}\log_{3}3 & \log_{2}3 \\ \log_{4}4 & \log_{2}4\end{array}\right| = \left|\begin{array}{cc}1 & \log_{2}3 \\ 1 & 2\end{array}\right| Calculating D2D_2: D2=(1)(2)(1)(log23)=2log23D_2 = (1)(2) - (1)(\log_2 3) = 2 - \log_2 3

The product D1×D2=(172log23)×(2log23)=17log23172(log23)2D_1 \times D_2 = \left(\frac{17}{2}\log_2 3\right) \times (2 - \log_2 3) = 17 \log_2 3 - \frac{17}{2}(\log_2 3)^2.

Both interpretations lead to expressions involving log23\log_2 3, which cannot be simplified further to a numerical value unless log23\log_2 3 itself is a specific value or cancels out. Given the typical nature of "simplify" problems in exams, a simple numerical answer is often expected. Neither of these interpretations yields a simple numerical answer.

Therefore, the question is fundamentally incomplete due to the missing arguments in the logarithm terms. It is impossible to provide a definitive simplified answer without this information.

If forced to choose the most common convention for such a typo (or if it's a fill-in-the-blank question where the simplest expression is sought), Interpretation 1 leads to a slightly simpler expression (18log2318 \log_2 3) compared to Interpretation 2 (17log23172(log23)217 \log_2 3 - \frac{17}{2}(\log_2 3)^2). However, without context or options, stating the question is incomplete is the most accurate response.

The problem statement has missing values. Assuming the missing values are XX and YY: D1=log2512log43log8Xlog49D_1 = \left|\begin{array}{cc}\log_{2}512 & \log_{4}3 \\ \log_{8}X & \log_{4}9\end{array}\right| D2=log33log23log4Ylog24D_2 = \left|\begin{array}{cc}\log_{3}3 & \log_{2}3 \\ \log_{4}Y & \log_{2}4\end{array}\right|

D1=912log23log2X3log23=9log2312log23log2X3=log23(9log2X6)D_1 = \left|\begin{array}{cc}9 & \frac{1}{2}\log_{2}3 \\ \frac{\log_2 X}{3} & \log_{2}3\end{array}\right| = 9\log_2 3 - \frac{1}{2}\log_2 3 \cdot \frac{\log_2 X}{3} = \log_2 3 \left(9 - \frac{\log_2 X}{6}\right) D2=1log23log2Y22=2log23log2Y2=2log23log2Y2D_2 = \left|\begin{array}{cc}1 & \log_{2}3 \\ \frac{\log_2 Y}{2} & 2\end{array}\right| = 2 - \log_2 3 \cdot \frac{\log_2 Y}{2} = 2 - \frac{\log_2 3 \cdot \log_2 Y}{2}

The product is log23(9log2X6)(2log23log2Y2)\log_2 3 \left(9 - \frac{\log_2 X}{6}\right) \left(2 - \frac{\log_2 3 \cdot \log_2 Y}{2}\right). This cannot be simplified without XX and YY.