Question
Question: Adjoint of the matrix $N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$...
Adjoint of the matrix N=−414−304−313

−414−304−313
Solution
To find the adjoint of a matrix N, we follow these steps:
-
Calculate the matrix of cofactors: For each element nij in the matrix N, its cofactor Cij is given by Cij=(−1)i+jMij, where Mij is the minor of the element nij (the determinant of the submatrix formed by deleting the i-th row and j-th column).
-
Transpose the matrix of cofactors: The adjoint of N, denoted as adj(N), is the transpose of the matrix of cofactors.
Given matrix: N=−414−304−313
Let's calculate each cofactor:
C11=(−1)1+10413=(0×3)−(1×4)=0−4=−4
C12=(−1)1+21413=−((1×3)−(1×4))=−(3−4)=−(−1)=1
C13=(−1)1+31404=(1×4)−(0×4)=4−0=4
C21=(−1)2+1−34−33=−((−3×3)−(−3×4))=−(−9−(−12))=−(−9+12)=−(3)=−3
C22=(−1)2+2−44−33=(−4×3)−(−3×4)=−12−(−12)=−12+12=0
C23=(−1)2+3−44−34=−((−4×4)−(−3×4))=−(−16−(−12))=−(−16+12)=−(−4)=4
C31=(−1)3+1−30−31=(−3×1)−(−3×0)=−3−0=−3
C32=(−1)3+2−41−31=−((−4×1)−(−3×1))=−(−4−(−3))=−(−4+3)=−(−1)=1
C33=(−1)3+3−41−30=(−4×0)−(−3×1)=0−(−3)=3
Now, form the matrix of cofactors, let's call it C: C=C11C21C31C12C22C32C13C23C33=−4−3−3101443
Finally, the adjoint of N is the transpose of the matrix of cofactors C: adj(N)=CT=−414−304−313
Notice that the adjoint of the matrix N is the matrix N itself. This implies that N is an involutory matrix and its determinant is 1.