Solveeit Logo

Question

Question: Adjoint of the matrix $N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$...

Adjoint of the matrix N=[433101443]N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}

Answer

[433101443]\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}

Explanation

Solution

To find the adjoint of a matrix NN, we follow these steps:

  1. Calculate the matrix of cofactors: For each element nijn_{ij} in the matrix NN, its cofactor CijC_{ij} is given by Cij=(1)i+jMijC_{ij} = (-1)^{i+j} M_{ij}, where MijM_{ij} is the minor of the element nijn_{ij} (the determinant of the submatrix formed by deleting the ii-th row and jj-th column).

  2. Transpose the matrix of cofactors: The adjoint of NN, denoted as adj(N)adj(N), is the transpose of the matrix of cofactors.

Given matrix: N=[433101443]N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}

Let's calculate each cofactor:

C11=(1)1+10143=(0×3)(1×4)=04=4C_{11} = (-1)^{1+1} \begin{vmatrix} 0 & 1 \\ 4 & 3 \end{vmatrix} = (0 \times 3) - (1 \times 4) = 0 - 4 = -4

C12=(1)1+21143=((1×3)(1×4))=(34)=(1)=1C_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} = -((1 \times 3) - (1 \times 4)) = -(3 - 4) = -(-1) = 1

C13=(1)1+31044=(1×4)(0×4)=40=4C_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 0 \\ 4 & 4 \end{vmatrix} = (1 \times 4) - (0 \times 4) = 4 - 0 = 4

C21=(1)2+13343=((3×3)(3×4))=(9(12))=(9+12)=(3)=3C_{21} = (-1)^{2+1} \begin{vmatrix} -3 & -3 \\ 4 & 3 \end{vmatrix} = -((-3 \times 3) - (-3 \times 4)) = -(-9 - (-12)) = -(-9 + 12) = -(3) = -3

C22=(1)2+24343=(4×3)(3×4)=12(12)=12+12=0C_{22} = (-1)^{2+2} \begin{vmatrix} -4 & -3 \\ 4 & 3 \end{vmatrix} = (-4 \times 3) - (-3 \times 4) = -12 - (-12) = -12 + 12 = 0

C23=(1)2+34344=((4×4)(3×4))=(16(12))=(16+12)=(4)=4C_{23} = (-1)^{2+3} \begin{vmatrix} -4 & -3 \\ 4 & 4 \end{vmatrix} = -((-4 \times 4) - (-3 \times 4)) = -(-16 - (-12)) = -(-16 + 12) = -(-4) = 4

C31=(1)3+13301=(3×1)(3×0)=30=3C_{31} = (-1)^{3+1} \begin{vmatrix} -3 & -3 \\ 0 & 1 \end{vmatrix} = (-3 \times 1) - (-3 \times 0) = -3 - 0 = -3

C32=(1)3+24311=((4×1)(3×1))=(4(3))=(4+3)=(1)=1C_{32} = (-1)^{3+2} \begin{vmatrix} -4 & -3 \\ 1 & 1 \end{vmatrix} = -((-4 \times 1) - (-3 \times 1)) = -(-4 - (-3)) = -(-4 + 3) = -(-1) = 1

C33=(1)3+34310=(4×0)(3×1)=0(3)=3C_{33} = (-1)^{3+3} \begin{vmatrix} -4 & -3 \\ 1 & 0 \end{vmatrix} = (-4 \times 0) - (-3 \times 1) = 0 - (-3) = 3

Now, form the matrix of cofactors, let's call it CC: C=[C11C12C13C21C22C23C31C32C33]=[414304313]C = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} = \begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix}

Finally, the adjoint of NN is the transpose of the matrix of cofactors CC: adj(N)=CT=[433101443]adj(N) = C^T = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}

Notice that the adjoint of the matrix NN is the matrix NN itself. This implies that NN is an involutory matrix and its determinant is 1.