Solveeit Logo

Question

Question: Simplify: $\frac{\log_2 512}{\log_3 8} \log_3 9 \frac{\log_3 3}{\log_3 4} \log_4 4$...

Simplify: log2512log38log39log33log34log44\frac{\log_2 512}{\log_3 8} \log_3 9 \frac{\log_3 3}{\log_3 4} \log_4 4

A

10

B

1

C

9

D

16

Answer

None of the options provided are correct based on the exact expression.

Explanation

Solution

To simplify the given expression, we evaluate each logarithmic term:

  1. log2512=9\log_2 512 = 9 since 512=29512 = 2^9.
  2. log38=3log32\log_3 8 = 3 \log_3 2 since 8=238 = 2^3.
  3. log39=2\log_3 9 = 2 since 9=329 = 3^2.
  4. log33=1\log_3 3 = 1.
  5. log34=2log32\log_3 4 = 2 \log_3 2 since 4=224 = 2^2.
  6. log44=1\log_4 4 = 1.

Substituting these values back into the original expression:

93log32×2×12log32×1=186(log32)2=3(log32)2\frac{9}{3 \log_3 2} \times 2 \times \frac{1}{2 \log_3 2} \times 1 = \frac{18}{6 (\log_3 2)^2} = \frac{3}{(\log_3 2)^2}

Using the change of base rule logba=1logab\log_b a = \frac{1}{\log_a b}, we get:

3(1log23)2=3(log23)2\frac{3}{(\frac{1}{\log_2 3})^2} = 3 (\log_2 3)^2

Since log23\log_2 3 is an irrational number, 3(log23)23 (\log_2 3)^2 is also irrational. The options provided are integers, indicating an inconsistency between the question and the options. Therefore, none of the provided options are correct.