Solveeit Logo

Question

Question: Determine the area under the curve $y=x^3-x^2$ from $x=1$ to $x=5$....

Determine the area under the curve y=x3x2y=x^3-x^2 from x=1x=1 to x=5x=5.

A

344/3 sq unit

B

342/3 sq unit

C

345 sq unit

D

344 sq unit

Answer

344/3 sq unit

Explanation

Solution

The area under the curve y=f(x)y=f(x) from x=ax=a to x=bx=b is calculated by the definite integral abf(x)dx\int_{a}^{b} f(x) dx. For y=x3x2y=x^3-x^2 from x=1x=1 to x=5x=5, we compute 15(x3x2)dx\int_{1}^{5} (x^3 - x^2) dx.

  1. Find the antiderivative: (x3x2)dx=x44x33\int (x^3 - x^2) dx = \frac{x^4}{4} - \frac{x^3}{3}.

  2. Evaluate the antiderivative at the limits: [x44x33]15=(544533)(144133)\left[ \frac{x^4}{4} - \frac{x^3}{3} \right]_{1}^{5} = \left( \frac{5^4}{4} - \frac{5^3}{3} \right) - \left( \frac{1^4}{4} - \frac{1^3}{3} \right).

  3. Calculate the values: (62541253)(1413)\left( \frac{625}{4} - \frac{125}{3} \right) - \left( \frac{1}{4} - \frac{1}{3} \right).

  4. Simplify fractions: (187550012)(3412)=137512(112)\left( \frac{1875 - 500}{12} \right) - \left( \frac{3 - 4}{12} \right) = \frac{1375}{12} - \left( \frac{-1}{12} \right).

  5. Perform subtraction: 137512+112=137612\frac{1375}{12} + \frac{1}{12} = \frac{1376}{12}.

  6. Reduce the fraction: 137612=3443\frac{1376}{12} = \frac{344}{3}.

Therefore, the area under the curve is 3443\frac{344}{3} sq unit.